Circadian molecular clock disruption in chronic pulmonary diseases.

Trends Mol Med

Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA. Electronic address:

Published: June 2022

The circadian clock is the biochemical oscillator with a near 24-h period that is responsible for generating the circadian rhythms in peripheral organs including the lung. Mounting evidence suggests that circadian clock disruption during chronic lung diseases plays an essential role in augmented oxidative stress, inflammatory response, metabolic imbalances, hypoxia/hyperoxia, mucus secretion, dysregulated autophagy, and alters pulmonary function. Here, we review circadian clock disruption and discuss candidate clock genes that are altered at the transcriptional or translational level in chronic pulmonary diseases. This review aims to provide the current knowledge and understanding of the circadian molecular clock disruption in chronic pulmonary diseases which will further advance the development of novel clock-based therapeutics in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167664PMC
http://dx.doi.org/10.1016/j.molmed.2022.04.002DOI Listing

Publication Analysis

Top Keywords

clock disruption
16
disruption chronic
12
chronic pulmonary
12
pulmonary diseases
12
circadian clock
12
circadian molecular
8
molecular clock
8
circadian
6
clock
6
disruption
4

Similar Publications

Background: Circadian rhythm disruption (CRD) affects the expression levels of a range of biological clock genes, such as brain and muscle ARNT-Like-1 (BMAL1), which is considered to be an important factor in triggering or exacerbating inflammatory response. However, the underlying effect of CRD on the pathogenesis of apical periodontitis, a common oral inflammatory disease, currently remains unknown. Exploring the effects and pathogenic mechanisms of CRD on apical periodontitis will be beneficial in providing new ideas for the prevention and treatment of apical periodontitis.

View Article and Find Full Text PDF

The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.

View Article and Find Full Text PDF

Patients after thoracic surgery experience significant pain that can disrupt normal respiratory mechanics, increase the risk of respiratory complications, and impair recovery. Poorly controlled postoperative pain can develop into persistent postoperative pain. In addition, using opioids for pain control in the thoracic surgical population makes them more susceptible to opioid-related side effects due to their pre-existing comorbidities.

View Article and Find Full Text PDF

Circadian aspects in nonpharmacologic and pharmacologic treatment of insomnia.

Handb Clin Neurol

January 2025

Department of Surgical Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy; Department of Neuroscience, Psychology Unit, University of Pisa Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy.

Insomnia disorder is a frequent sleep disorder leading to significant health and economic consequences. It has been proposed that individuals with insomnia may experience compromised deactivation systems of arousal, leading to a chronic state of hyperactivation of arousal known as hyperarousal, along with instability in the flip-flop system. Such disruptions may have a primarily impact on the sleep homeostatic drive process.

View Article and Find Full Text PDF

Obstructive sleep apnea syndrome, orexin, and sleep-wake cycle: The link with the neurodegeneration.

Handb Clin Neurol

January 2025

Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.

Obstructive sleep apnea syndrome (OSAS) significantly affects the sleep-wake circadian rhythm through intermittent hypoxia and chronic sleep fragmentation. OSAS patients often experience excessive daytime sleepiness, frequent awakenings, and sleep fragmentation, leading to a disrupted circadian rhythm and altered sleep-wake cycle. These disruptions may exacerbate OSAS symptoms and contribute to neurodegenerative processes, particularly through the modulation of clock gene expression such as CLOCK, BMAL1, and PER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!