Acid forms of zeolites have been used in industry for several decades but scaling the strength of their acid centers is still an unresolved and intensely debated issue. In this paper, the Brønsted acidity strength in aluminosilicates measured by their deprotonation energy (DPE) was investigated for FAU, CHA, IFR, MOR, FER, MFI, and TON zeolites by means of periodic and cluster calculations at the density functional theory (DFT) level. The main drawback of the periodic DFT is that it does not provide reliable absolute values due to spurious errors associated with the background charge introduced in anion energy calculations. To alleviate this problem, we employed a novel approach to cluster generation to obtain accurate values of DPE. The cluster models up to 150 T atoms for the most stable Brønsted acid sites were constructed on spheres of increasing diameter as an extension of Harrison's approach to calculating Madelung constants. The averaging of DPE for clusters generated this way provides a robust estimate of DPE for investigated zeolites despite slow convergence with the cluster size. The accuracy of the cluster approach was further improved by a scaled electrostatic embedding scheme proposed in this work. The electrostatic embedding model yields the most reliable values with the average deprotonation energy of about 1245 ± 9 kJ·mol for investigated acidic zeolites. The cluster calculations strongly indicate a correlation between the deprotonation energy and the zeolite framework density. The DPE results obtained with our electrostatic embedding model are highly consistent with the previously reported QM/MM and periodic calculations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068704 | PMC |
http://dx.doi.org/10.1038/s41598-022-11354-x | DOI Listing |
Biochem Biophys Res Commun
December 2024
Biophysics Institute, CNR-IBF, Via Corti 12, I-20133, Milano, Italy; Department of Bioscience, University of Milan, Via Celoria 26, I-20133, Milano, Italy. Electronic address:
Aldolases are crucial enzymes that catalyze the formation of carbon-carbon bonds in the context of the anabolic and catabolic pathways of various metabolites. The bacterium Pseudomonas fluorescens N3 can use naphthalene as its sole carbon and energy source by using, among other enzymes, the trans-o-hydroxybenzylidenepyruvate (tHBP) hydratase-aldolase (HA), encoded by the nahE gene. In this study, we present the crystallographic structures of tHBP-HA in three different functional states: the apo enzyme with a phosphate ion in the active site, and the Schiff base adduct bound either to pyruvate or to the substitute with '(R)-4-hydroxy-4-(2-hydroxyphenyl)-2-oxobutanoate'(intermediate state).
View Article and Find Full Text PDFChemphyschem
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, PS-ISRR, GERMANY.
Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.
View Article and Find Full Text PDFNat Commun
January 2025
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
Transition-metal carbides have been advocated as the promising alternatives to noble-metal platinum-based catalysts in electrocatalytic hydrogen evolution reaction over half a century. However, the effectiveness of transition-metal carbides catalyzing hydrogen evolution in high-pH electrolyte is severely compromised due to the lowered proton activity and intractable alkaline-leaching issue of transition-metal centers. Herein, on the basis of validation of molybdenum-carbide model-catalyst system by taking advantage of surface science techniques, MoC micro-size spheres terminated by Al doped MoO layer exhibit a notable performance of alkaline hydrogen evolution with a near-zero onset-potential, a low overpotential (40 mV) at a typical current density of 10 mA/cm, and a small Tafel slope (45 mV/dec), as well as a long-term stability for continuous hydrogen production over 200 h.
View Article and Find Full Text PDFJ Mass Spectrom
January 2025
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
In our previous work, the sodiation of melittin, cytochrome c, and ubiquitin in a 1 mM NaOH water/methanol solution was studied by electrospray mass spectrometry. It was suggested that the α-helix is more resistant to sodiation than the β-sheet. In this study, sodiation of enhanced green fluorescent protein (EGFP) composed of a β-barrel was studied in 1% CHCOOH (AcOH) or 1 mM NaOH water/methanol solution by electrospray mass spectrometry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!