Fast evaluation technique for the shear viscosity and ionic conductivity of electrolyte solutions.

Sci Rep

Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.

Published: May 2022

With the growing need to obtain ideal materials for various applications, there is an increasing interest in computational methods to rapidly and accurately search for materials. Molecular dynamics simulation is one of the successful methods used to investigate liquid electrolytes with high transport properties applied in lithium-ion batteries. However, further reduction in computational cost is required to find a novel material with the desired properties from a large number of combinations. In this study, we demonstrate an effective fast evaluation technique for shear viscosity and ionic conductivity by molecular dynamics simulation for an exhaustive search of electrolyte materials with high transport properties. The proposed model was combined with a short-time correlation function of the stress tensor and empirical relationships to address the issues of inefficient and uncertain evaluation by conventional molecular dynamics methods. Because we focus on liquid electrolytes consisting of organic solvents and lithium salts, our model requires dissociation ratio and effective diffusion size of lithium salts. Our method is applied to search for the compositional combinations of electrolytes with superior transport properties even at low temperatures. These results correlate well with experimental results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068762PMC
http://dx.doi.org/10.1038/s41598-022-10704-zDOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
transport properties
12
fast evaluation
8
evaluation technique
8
technique shear
8
shear viscosity
8
viscosity ionic
8
ionic conductivity
8
dynamics simulation
8
liquid electrolytes
8

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!