Determination of the optimal maturation temperature for adult honey bee toxicity testing.

Comp Biochem Physiol C Toxicol Pharmacol

Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. Electronic address:

Published: July 2022

Honey bees are exposed to various pesticides through pollinating and in-hive Varroa mite control. The most basic method for evaluating pesticide toxicity is the indoor bioassay using worker bees, in which newly emerged adults are matured in incubators for conditioning before use. However, little information is available on the optimum maturation temperature from a toxicological point of view, even though it can affect honey bee responses to pesticides. In this paper, to evaluate the optimal maturation temperature for pesticide toxicity testing, several indices related to the development, gene transcription, and toxicological properties of honey bee adults following maturation at 25, 30, and 35 °C were compared with those of field bees. The body weight and developmental state of hypopharyngeal glands were highest in the bees matured at 30 °C, and the overall transcription profiles of detoxification-related genes in the field bees were closest to those of bees matured at 30 °C, whereas immaturity and features of thermal stress were observed in the 25 °C and 35 °C bee groups, respectively. In the bioassay results, the effects of maturation temperature on the toxic response of honey bees varied significantly depending on the type of pesticide. By considering all the biological and toxicological aspects examined, we confirmed that 30 °C is a recommended maturation temperature for adult honey bee toxicity test.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2022.109359DOI Listing

Publication Analysis

Top Keywords

maturation temperature
20
honey bee
16
optimal maturation
8
temperature adult
8
adult honey
8
bee toxicity
8
toxicity testing
8
honey bees
8
pesticide toxicity
8
field bees
8

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm.

Carbohydr Polym

March 2025

College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:

In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.

View Article and Find Full Text PDF

Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities.

View Article and Find Full Text PDF

Nanomedicine-unlocked radiofrequency dynamic therapy dampens incomplete radiofrequency ablation-arised immunosuppression to suppress cancer relapse.

Biomaterials

January 2025

Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China. Electronic address:

Incomplete radiofrequency ablation (iRFA) not only leaves residual tumor, but also render the residual tumor highly self-adaptable and immunosuppressive, consequently expediting residual tumor progression including relapse. To address it, radiofrequency dynamic therapy (RFDT) with identical trigger (namely radiofrequency) has been established and enabled by polyethylene glycol (PEG)-modified Fe-based single atom nanozyme (P@Fe SAZ). P@Fe SAZ can respond to radiofrequency field to produce reactive oxygen species (ROS), attaining the nanomedicine-unlocked low-temperature RFDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!