Flexible Magnetic Micropartners for Micromanipulation at Interfaces.

ACS Appl Mater Interfaces

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.

Published: May 2022

AI Article Synopsis

Article Abstract

Microrobots working at liquid surfaces have immense potential for micromanipulation in tight and enclosed spaces, whereas constructing agile and functional microrobots with simple structures at liquid surfaces is a great challenge. Herein, a pair of magnetic circular microdisks working as partners at ethylene glycol (EG) surfaces are proposed in order to accomplish flexible locomotion and in situ micromanipulation tasks. The microdisks can be controlled to connect and separate by modulating the orientation of the applied magnetic field. After the two disks connect as an entity, they are transformed into micropartners under an oscillating magnetic field in 3D space. By changing the vertical component of the oscillating field, the micropartners can obtain controllable propulsion through paddling and wriggling modes, and the locomotion speed can reach approximately two body lengths per second. They can also climb a meniscus, and even crawl on a solid surface in a liquid. Finally, this pair of micropartners is demonstrated as a flexible microgripper to implement manipulations at the liquid surfaces, including cargo capture, delivery along prescribed paths, and release.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c01131DOI Listing

Publication Analysis

Top Keywords

liquid surfaces
12
magnetic field
8
flexible magnetic
4
micropartners
4
magnetic micropartners
4
micropartners micromanipulation
4
micromanipulation interfaces
4
interfaces microrobots
4
microrobots working
4
liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!