The evolutionary rates of functionally related genes often covary. We present a gene coevolution network inferred from examining nearly 3 million orthologous gene pairs from 332 budding yeast species spanning ~400 million years of evolution. Network modules provide insight into cellular and genomic structure and function. Examination of the phenotypic impact of network perturbation using deletion mutant data from the baker's yeast , which were obtained from previously published studies, suggests that fitness in diverse environments is affected by orthologous gene neighborhood and connectivity. Mapping the network onto the chromosomes of and revealed that coevolving orthologous genes are not physically clustered in either species; rather, they are often located on different chromosomes or far apart on the same chromosome. The coevolution network captures the hierarchy of cellular structure and function, provides a roadmap for genotype-to-phenotype discovery, and portrays the genome as a linked ensemble of genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067921PMC
http://dx.doi.org/10.1126/sciadv.abn0105DOI Listing

Publication Analysis

Top Keywords

orthologous gene
12
coevolution network
12
structure function
12
gene coevolution
8
cellular genomic
8
genomic structure
8
network
6
orthologous
4
network insight
4
insight eukaryotic
4

Similar Publications

Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.

View Article and Find Full Text PDF

Comparative Genomics and Pathogenicity Analysis of Three Fungal Isolates Causing Barnyard Grass Blast.

J Fungi (Basel)

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.

Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents.

View Article and Find Full Text PDF

The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target.

View Article and Find Full Text PDF

Background: Mungbean () is one of the most socio-economically important leguminous food crops of Asia and a rich source of dietary protein and micronutrients. Understanding its genetic makeup is crucial for genetic improvement and cultivar development.

Methods: In this study, we combined single-tube long-fragment reads (stLFR) sequencing technology with high-throughput chromosome conformation capture (Hi-C) technique to obtain a chromosome-level assembly of cultivar 'KUML4'.

View Article and Find Full Text PDF

Tef [ (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!