Recent advances in protein-imprinted polymers: synthesis, applications and challenges.

J Mater Chem B

Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.

Published: September 2022

The molecular imprinting technique (MIT), also described as the "lock to key" method, has been demonstrated as an effective tool for the creation of synthetic polymers with antibody-like sites to specifically recognize target molecules. To date, most successful molecular imprinting researches were limited to small molecules (<1500 Da); biomacromolecule (especially protein) imprinting remains a serious challenge due to their large size, chemical and structural complexity, and environmental instability. Nevertheless, protein imprinting has achieved some significant breakthroughs in imprinting methods and applications over the past decade. Some special protein-imprinted materials with outstanding properties have been developed and exhibited excellent potential in several advanced fields such as separation and purification, proteomics, biomarker detection, bioimaging and therapy. In this review, we critically and comprehensively surveyed the recent advances in protein imprinting, particularly emphasizing the significant progress in imprinting methods and highlighted applications. Finally, we summarize the major challenges remaining in protein imprinting and propose its development direction in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb00273fDOI Listing

Publication Analysis

Top Keywords

molecular imprinting
8
advances protein-imprinted
4
protein-imprinted polymers
4
polymers synthesis
4
synthesis applications
4
applications challenges
4
challenges molecular
4
imprinting technique
4
technique mit
4
mit described
4

Similar Publications

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

Silver-Russell Syndrome (SRS) is a genetic disorder characterized by intrauterine and postnatal growth restriction. Most cases are caused by an imprinting error either with hypomethylation of the Imprinted Control Region 1 at 11p15.5, or maternal uniparental disomy of chromosome 7.

View Article and Find Full Text PDF

Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.

View Article and Find Full Text PDF

How parental factors shape the plant embryo.

Biochem Soc Trans

January 2025

Centre for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany.

Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development.

View Article and Find Full Text PDF

Generation of live mice from haploid ESCs with germline-DMR deletions or switch.

Cell Discov

January 2025

Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

Genomic imprinting is required for sexual reproduction and embryonic development of mammals, in which, differentially methylated regions (DMRs) regulate the parent-specific monoallelic expression of imprinted genes. Numerous studies on imprinted genes have highlighted their critical roles in development. However, what imprinting network is essential for development is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!