Time-dependent photoemission from droplets: influence of size and charge on the photophysics near the surface.

Faraday Discuss

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland.

Published: August 2022

Photoemission from submicrometer droplets containing a mixture of dioctyl phthalate and dioctyl sebacate was investigated by femtosecond and nanosecond photoionization. Photoelectron spectra recorded after ionization with single 4.7 eV femtosecond or nanosecond laser pulses showed marked differences between the two cases. These differences were attributed to ionization of long-lived states which only occurred within the duration of the nanosecond pulse. The tentative assignment of the long-lived states to dioctyl phthalate triplet states is discussed. A nanosecond-femtosecond pump-probe scheme using 4.7 eV (pump) and 3.1 eV (probe) pulses was used to investigate the decay dynamics of these long-lived states. The dynamics showed an accelerated decay rate at higher dioctyl phthalate concentrations. Furthermore, the dependence of the decay dynamics on droplet size and charge was investigated. The decay of the long-lived states was found to be faster in smaller droplets as well as in neutral droplets compared with both positively and negatively charged droplets. Possible mechanisms to explain these observations and the dominance of contributions from the droplets surface are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408814PMC
http://dx.doi.org/10.1039/d1fd00108fDOI Listing

Publication Analysis

Top Keywords

long-lived states
16
dioctyl phthalate
12
size charge
8
femtosecond nanosecond
8
decay dynamics
8
droplets
6
states
5
time-dependent photoemission
4
photoemission droplets
4
droplets influence
4

Similar Publications

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

Growing evidence supports the importance of extracellular vesicle (EV) as mediators of communication in pathological processes, including those underlying respiratory disease. However, establishing methods for isolating and characterizing EVs remains challenging, particularly for respiratory samples. This study set out to address this challenge by comparing different EV isolation methods and evaluating their impacts on EV yield, markers of purity, and proteomic signatures, utilizing equine/horse bronchoalveolar lavage samples.

View Article and Find Full Text PDF

Heterocyclic aromatic amines (HAAs), formed during the cooking of meat, are potential human carcinogens, underscoring the need for long-lived biomarkers to assess exposure and cancer risk. Frequent consumption of well-done meats containing 2-amino-1-methyl-6-phenylimidazo[4,5-]pyridine (PhIP), a prevalent HAA that is a prostatic carcinogen in rodents and DNA-damaging agent in human prostate cells, has been linked to aggressive prostate cancer (PC) pathology. African American (AA) men face nearly twice the risk for developing and dying from PC compared to White men.

View Article and Find Full Text PDF

Hydrogenotrophic methanogenesis at 7-12 mbar by Methanosarcina barkeri under simulated martian atmospheric conditions.

Sci Rep

January 2025

Department of Plant Pathology, Space Life Sciences Lab, University of Florida, 505 Odyssey Way, Exploration Park,, Merritt Island, FL, 32953, USA.

Mars, with its ancient history of long-lived habitable environments, continues to captivate researchers exploring the potential for extant life. This study investigates the biosignature potential of Martian methane by assessing the viability of hydrogenotrophic methanogenesis in Methanosarcina barkeri MS under simulated Martian surface conditions. We expose M.

View Article and Find Full Text PDF

Potential energy curves (PECs) for the spin-free (ΛS) and spin-orbit (Ω) states associated with the four lowest-lying dissociation channels of Na2 and K2 were calculated at the SA-CASSCF/SO-CASPT2/aug-cc-pwCVQZ-DK level. The PECs of Na2 were consistent with the experimental data and with the FS-CCSD (2,0) calculations, reproducing the double-well and the "shelf" character for some of the potentials of the excited states. For K2, the PECs behaved in a similar way and the spectroscopic parameters for the ground and the excited states are in good agreement with the available experimental values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!