COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065247PMC
http://dx.doi.org/10.1007/s11356-022-20328-5DOI Listing

Publication Analysis

Top Keywords

natural sources
8
marine drugs
8
drugs potential
8
marine resources
8
marine
6
sars-cov-2
5
multifaceted role
4
role natural
4
covid-19
4
sources covid-19
4

Similar Publications

Clinical Manifestations.

Alzheimers Dement

December 2024

Winterlight Labs, Toronto, ON, Canada.

Background: Changes in the structure and use of language are well established clinical characteristics of Alzheimer's disease. In recent years, there has been a concerted effort to objectively quantify these changes using the latest advances in Natural Language Processing (NLP) tools. Much academic research has been conducted to evaluate how these speech characteristics change with the course of illness, but they have yet to be elevated beyond exploratory endpoints in trials.

View Article and Find Full Text PDF

Heteropolyacid Ligands in Two-Dimensional Channels Enable Lithium Separation from Monovalent Cations.

ACS Nano

January 2025

Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China.

Extracting lithium from salt lakes requires ion-selective membranes with customizable nanochannels. However, it remains a major challenge to separate alkali cations due to their same valences and similar ionic radius. Inspired by the K channel of KcsA K, significant progress has been made in adjusting nanochannel size to control the ion selectivity dominated by alkali cations dehydration.

View Article and Find Full Text PDF

Warfare under the waves: a review of bacteria-derived algaecidal natural products.

Nat Prod Rep

January 2025

School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.

Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health.

View Article and Find Full Text PDF

The multifaceted nature of research integrity (RI) calls for the adoption of innovative methodologies to achieve a more thorough understanding. Mixed methods research (MMR) provides a valuable framework by combining diverse data sources, enabling a more nuanced exploration of complex research questions. This paper reviews seven RI studies employing MMR to identify methodological shortcomings.

View Article and Find Full Text PDF

Adaptive Radiative Thermal Management Using Transparent, Flexible Ag Nanowire Networks.

ACS Appl Mater Interfaces

January 2025

ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.

Effective heat management is critical for improving energy efficiency and minimizing environmental impact. Passive radiative heat management systems rely on specific materials and design configurations to naturally modulate temperature, enhance system reliability, and decrease operational costs by modulating infrared light. However, their static nature proves insufficient in dynamic settings experiencing significant temperature fluctuations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!