A major obstacle in studying human central nervous system (CNS) diseases is inaccessibility to the affected tissue and cells. Even in limited cases where tissue is available through surgical interventions, differentiated neurons cannot be maintained for extended time frames, which is prohibitive for experimental repetition and scalability. Advances in methodologies for reprogramming human somatic cells into induced pluripotent stem cells (iPSC) and directed differentiation of human neurons in culture now allow access to physiological and disease relevant cell types. In particular, patient iPSC-derived neurons represent unique ex vivo neuronal networks that allow investigating disease genetic and molecular pathways in physiologically accurate cellular microenvironments, importantly recapitulating molecular and cellular phenotypic aspects of disease. Generation of functional neural cells from iPSCs relies on manipulation of culture formats in the presence of specific factors that promote the conversion of pluripotent stem cells into neurons. To this end, several experimental protocols have been developed. Direct differentiation of stem cells into post-mitotic neurons is usually associated with low throughput, low yield, and high technical variability. Instead, methods relying on expansion of the intermediate neural progenitor cells (NPCs) show incredible potential for posterior generation of suitable neuronal cultures for cellular and biochemical assays, as well as drug screening. NPCs are expandable, self-renewable multipotent cells that can differentiate into astrocytes, oligodendrocytes, and electrically active neurons. Here, we describe a protocol for generating iPSC-derived NPCs via formation of neural aggregates and selection of NPC precursor neural rosettes, followed by a simple and reproducible method for generating a mixed population of cortical-like neurons through growth factor withdrawal. Implementation of this protocol has the potential to advance the goals of precision medicine research for both neurological and psychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1979-7_10 | DOI Listing |
Stem Cells
January 2025
Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556 IN, USA.
Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.
View Article and Find Full Text PDFStem Cells
January 2025
Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.
Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!