Vertebral compression fractures (VCFs) often occur in patients with osteoporosis. These fractures can also lead to postural changes. Several studies have shown that patients with vertebral compression fractures have a restrictive pattern in their pulmonary function. Percutaneous vertebroplasty (PVP) is the standard treatment for vertebral compression fractures, with the benefits of pain relief and enhancement of vertebral stability for partially collapsed vertebral bodies. However, the effects of PVP on short-term recovery of respiratory performance have not been investigated. Therefore, this study aimed to investigate the changes in pulmonary function, respiratory muscle strength, maximal voluntary ventilation (MVV), and chest mobility in patients with vertebral compression fractures after PVP. This research was approved by the clinic committee of the E-DA Hospital Institutional Review Board (EMRP07109N) and registered in the Thai Clinical Trials Registry (TCTR20211029005). We recruited 32 VCF patients. Four-time points were measured: before and after PVP and 1 and 3 weeks after PVP. We measured pulmonary function and maximum voluntary ventilation (MVV) by using spirometry. Respiratory muscle strength was assessed by using a respiratory pressure meter. The chest expansion test was used to evaluate chest mobility. A visual analogue scale (VAS) was used to assess resting and aggravated back pain. Chest expansion and back pain improved at each time point after PVP. MVV showed significant progress at both 1 and 3 weeks after discharge. Forced expiratory volume in 1 second (FEV1) and maximal inspiratory muscle strength significantly improved 1 week after discharge. Taking all the data together, PVP not only can resolve severe back pain but can also provide excellent improvements in MVV and chest mobility in patients with vertebral compression fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090413PMC
http://dx.doi.org/10.1080/07853890.2022.2063373DOI Listing

Publication Analysis

Top Keywords

vertebral compression
24
compression fractures
24
patients vertebral
12
pulmonary function
12
muscle strength
12
chest mobility
12
percutaneous vertebroplasty
8
vertebral
8
respiratory muscle
8
voluntary ventilation
8

Similar Publications

Keyhole decompression surgery for holospinal epidural abscess: a novel approach for spinal stability preservation.

Eur Spine J

January 2025

Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.

Purpose: Spinal epidural abscesses are rare yet serious conditions, often necessitating emergency surgical intervention. Holospinal epidural abscesses (HEA) extending from the cervical to the lumbosacral spine are even rarer and present significant challenges in management. This report aims to describe a case of HEA with both ventrally-located cervical and dorsally-located thoracolumbar epidural abscesses treated with a combination of anterior keyhole decompression and posterior skip decompression surgeries.

View Article and Find Full Text PDF

The Predictive Value of Multifidus Degeneration in Osteoporotic Vertebral Compression Fracture Patients with Kyphosis Deformity.

Spine J

January 2025

Orthopedic Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Road, Haidian District, Beijing 100191, China. Electronic address:

Background Context: Osteoporotic vertebral compression fracture (OVCF) causes pain, kyphosis and neurological damage, which significantly affect patients' quality of life. Patients with OVCF are often elderly and have severe osteoporosis, which makes preoperative symptom more serious, postoperative recovery worse and the incidence of postoperative complications high. The paraspinal muscles have been well studied in adult spinal deformities, but there is no conclusive evidence that their findings can be applied to OVCF.

View Article and Find Full Text PDF

Degeneration of the nucleus pulposus affects the internal volumetric strains and failure location of adjacent human metastatic vertebral bodies.

Acta Biomater

January 2025

Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:

Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.

View Article and Find Full Text PDF

A 4-year-old Nigerian Dwarf wether presented for chronic regurgitation and cervical swelling of three years duration. Physical examination revealed a large ventral cervical mass. The goat made repeated attempts to swallow and regurgitate, but the mass did not change significantly in size.

View Article and Find Full Text PDF
Article Synopsis
  • Scoliosis is identified through Cobb's angle, and this study aims to create a digital twin of the spine to analyze biomechanical stresses and disc degeneration related to idiopathic scoliosis using patient-specific data.
  • A 3D computational model was developed that modifies intervertebral disc properties based on radiological measurements, validated by comparing with patient images; finite element analysis clarified the impact of deformity on spinal biomechanics.
  • The results showed that the model accurately represented thoracic scoliosis and revealed that disc strain increases near the apex, with "type-C" curves at higher risk for herniation compared to "type-S," thereby enhancing understanding of scoliosis and aiding in treatment planning.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!