Nonequilibrium Phonon Thermal Resistance at MoS/Oxide and Graphene/Oxide Interfaces.

ACS Appl Mater Interfaces

Department of Mechanical Engineering, National University of Singapore, Queenstown 117576, Singapore.

Published: May 2022

Accurate measurements and physical understanding of thermal boundary resistance () of two-dimensional (2D) materials are imperative for effective thermal management of 2D electronics and photonics. In previous studies, heat dissipation from 2D material devices was presumed to be dominated by phonon transport across the interfaces. In this study, we find that, in addition to phonon transport, thermal resistance between nonequilibrium phonons in the 2D materials could play a critical role too when the 2D material devices are internally self-heated, either optically or electrically. We accurately measure the of oxide/MoS/oxide and oxide/graphene/oxide interfaces for three oxides (SiO, HfO, and AlO) by differential time-domain thermoreflectance (TDTR). Our measurements of across these interfaces with external heating are 2-4 times lower than the previously reported of the similar interfaces measured by Raman thermometry with internal self-heating. Using a simple model, we show that the observed discrepancy can be explained by an additional internal thermal resistance () between nonequilibrium phonons present during Raman measurements. We subsequently estimate that, for MoS and graphene, ≈ 31 and 22 m K GW, respectively. The values are comparable to the thermal resistance due to finite phonon transmission across interfaces of 2D materials and thus cannot be ignored in the design of 2D material devices. Moreover, the nonequilibrium phonons also lead to a different temperature dependence than that by phonon transport. As such, our work provides important insights into physical understanding of heat dissipation in 2D material devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c02062DOI Listing

Publication Analysis

Top Keywords

thermal resistance
16
material devices
16
phonon transport
12
nonequilibrium phonons
12
physical understanding
8
heat dissipation
8
dissipation material
8
resistance nonequilibrium
8
thermal
6
interfaces
6

Similar Publications

The objective of the study was to examine the mechanical and electrostatic properties of poly(vinyl chloride) intended for use in protective footwear. The poly(vinyl chloride) material was made with graphite (flake side dimensions 5 and 10 µm) additive in weight concentration variants from 0.5 to 10.

View Article and Find Full Text PDF

Red blood cells (RBC), are the most unique and abundant cell types. The diameter of RBCs is 7-8 μm. They have an essential role in transporting circulatory oxygen.

View Article and Find Full Text PDF

Highly Humidity-Resistant Oxynitride Phosphor BaSiNO:Ce for pc-LEDs.

Inorg Chem

January 2025

Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, P. R. China.

Many phosphor hosts, for example, nitrides and sulfides, often face challenges such as hydrolysis and oxidation, limiting their application in phosphor-converted white light-emitting diodes (pc-LEDs). In this study, we developed a highly humidity-resistant yellow-green-emitting phosphor BaSiNO:Ce (BSNO:Ce). The DFT calculations revealed a high Debye temperature (Θ = 1159 K), indicating a rigid crystal structure that contributes to the photoluminescence thermal quenching resistance of BSNO.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Enterococcus species, natural inhabitants of the human gut, have become major causes of life-threatening bloodstream infections (BSIs) and the third most frequent cause of hospital-acquired bacteremia. The rise of high-level gentamicin resistance (HLGR) in enterococcal isolates complicates treatment and revives bacteriophage therapy. This study isolated and identified forty E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!