AI Article Synopsis

  • The study investigates how the embryonic environment influences cancer cell metabolism, specifically focusing on mouse prostate carcinoma (RM-1) cells co-cultured with preimplantation mouse embryos.
  • Results showed that the treatment increased the expression of the SOX-2 gene, linked to cellular stemness, and altered the lipid composition of RM-1 cells compared to controls.
  • The research suggests that small molecules from the embryos may alter mitochondrial metabolism in cancer cells, but the specific tumorigenic effects of the treated RM-1 cells were not assessed.

Article Abstract

The embryonic environment can modify cancer cell metabolism, and it is reported to induce the loss of tumorigenic properties and even affect the differentiation of cancer cells into normal tissues. The cellular mechanisms related to this remarkable phenomenon, which is likely mediated by cell-to-cell communication, have been previously investigated with particular focus on the proteins and genes involved. In this study we report the optimization and results of a straightforward system where mouse prostate carcinoma (RM-1) cells were co-cultured for three days with preimplantation mouse embryos or spiked with deproteinated extracts from mouse blastocysts. Compared to controls, both treatments induced RM-1 cells to increase the expression of the SOX-2 gene, which is related to cellular stemness, as well as altered their lipid composition. Specific acyl-carnitines, diacylglycerols, phosphatidylglycerols, phosphatidylinositols, phosphatidylserines and cardiolipins selected using an elastic net model discriminated the treated RM-1 cells from controls. Note that the tumorigenic properties of the treated RM-1 cells were not evaluated in this research. Due to the nature of the lipids impacted in the treated RM-1 cells, we hypothesize that mitochondrial metabolism has been altered, and that small molecules both secreted from and present within the embryos might be involved in the induction of metabolic changes observed in the RM-1 cells. These molecules, which could influence cancer cell metabolism, may still be unknown ( structure, role).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276632PMC
http://dx.doi.org/10.1039/d2mo00071gDOI Listing

Publication Analysis

Top Keywords

rm-1 cells
28
treated rm-1
12
cells
8
cancer cell
8
cell metabolism
8
tumorigenic properties
8
rm-1
7
changes lipid
4
lipid profile
4
profile sox-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!