Background: The increased use of indomethacin (IND) is associated with gastrointestinal injury. This research aims to investigate the effects of a beta-blocker, carvedilol (CAR) on a rat model of IND-induced acute intestinal damage and clarify the probable underlying protective mechanisms.
Materials And Methods: Twenty-four male Wistar rats were divided into four groups. Control group: given vehicles; CAR-treated group: given 10 mg/kg/day CAR PO daily by gastric gavage for 10 consecutive days; IND-treated group: given a single Sc dose of 10 mg/kg IND at the end of the ninth day of the experiment; combined CAR/IND-treated group: given both IND and CAR.
Results: In the rats that received IND, severe intestinal histopathological changes together with oxidative and nitrosative intestinal stress were present biochemically and immunohistochemically. Obvious inflammatory and tissue damage were represented by the significant intestinal increases in TNF-α, COX-2, and caspase-3 together with the elevated expression of VCAM-1 adhesion molecules. Intestinal gene expression of NF-kB and COX-2 was also increased. Pretreatment with CAR significantly reversed the IND-induced intestinal toxic manifestations.
Conclusion: CAR has beneficial intestinal protective effects. Its ameliorative action is conferred through its antioxidant, antinitrosative, anti-inflammatory, and antiapoptotic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08923973.2022.2072327 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Gastroenterology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
Artificial intelligence (AI), with advantages such as automatic feature extraction and high data processing capacity and being unaffected by fatigue, can accurately analyze images obtained from colonoscopy, assess the quality of bowel preparation, and reduce the subjectivity of the operating physician, which may help to achieve standardization and normalization of colonoscopy. In this study, we aimed to explore the value of using an AI-driven intestinal image recognition model to evaluate intestinal preparation before colonoscopy. In this retrospective analysis, we analyzed the clinical data of 98 patients who underwent colonoscopy in Nantong First People's Hospital from May 2023 to October 2023.
View Article and Find Full Text PDFViruses
January 2025
Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA.
Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia.
This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.
Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!