, producer of a wide array of secondary metabolites, has the potential to be a source of new terpene synthases. In this work, a platform was constructed with BL21(DE3) by enhancing its endogenous 2-methyl-d-erythritol-4-phosphate pathway to supply sufficient terpenoid precursors. Using this precursor-supplying platform, we discovered two sesquiterpene synthases from : TS1, a new (+)-aristolochene synthase, and TS4, the first microbial (+)-bicyclogermacrene synthase. To enhance the sesquiterpene production by TS1, we employed a MBP fusion tag to improve the heterologous protein expression, resulting in the increase of aristolochene production up to 50 mg/L in a 72 h flask culture, which is the highest production reported to date. We also realized the first biosynthesis of (+)-bicyclogermacrene, achieving 188 mg/L in 72 h. This work highlights the great potential of this microbial platform for the discovery of new terpene synthases and opens new ways for the bioproduction of other valuable terpenoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c01885 | DOI Listing |
Chem Biodivers
December 2024
Zhejiang University of Technology, College of Pharmaceutical Science, 18, Chaowang Rd., Xiacheng Dist., 310024, Hangzhou, CHINA.
A total of 34 sesquiterpene derivates were obtained from the flower of Inula japonica Thunb. Compounds 2, 14-34 were identified as sesquiterpene monomers, while the other 12 isolates (1, 3-13) were characterized as sesquiterpene dimers. Among them, japonicone Z (1), an present undescribed sesquiterpene dimer, and another undescribed monomer, japonicol A (2), were discovered.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
Nine new structurally diverse filicinic acid-based meroterpenoids (-) with four kinds of carbon skeletons were isolated from the rhizomes of . Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds - feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China.
Danshen ( Bunge) is a perennial herbaceous plant of the Salvia genus in the family Lamiaceae. Its dry root is one of the important traditional Chinese herbal medicines with a long officinal history. The yield and quality of are influenced by various factors, among which drought is one of the most significant types of abiotic stress.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
Arctic haze has attracted considerable scientific interest for decades. However, limited studies have focused on the molecular composition of atmospheric particulate matter that contributes to Arctic haze. Our study collected atmospheric particles at Alert in the Canadian high Arctic from mid-February to early May 2000.
View Article and Find Full Text PDFMolecules
November 2024
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
Sesquiterpenes constitute the principal components of the genus , encompassing guaiane, germacrane, eudesmane, and polymer sesquiterpene lactones types. These secondary metabolites exhibit diverse pharmacological activities, including antitumor, antibacterial, anti-inflammatory, antiviral, antioxidant, hepatoprotective, and neuroprotective effects. Through a comprehensive literature search of the Web of Science, PubMed, SciFinder, and CNKI databases, it was discovered that there are as many as 145 main sesquiterpenoids in the genus .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!