Herein, a so-called carbon nanotube (CNT) electrode was printed in on a paper substrate using the handwriting technique and carbon nanotube ink in a marker pen to print the working electrode, graphite pencil to print the counter electrode and graphite/silver nanoparticle (AgNP) ink in a rollerball pen to print the quasi-reference electrode. The carbon nanotube electrode was characterized scanning electron microscopy. The electrode was optimized based on the type of paper, hydrophobic barrier and number of layers. In summary, the optimized parameters included the use of matte paper with a mineral spirit layer. The number of carbon nanotube layers to achieve the best electrochemical performance was 25. The final graphite electrode was a miniaturized and flexible paper-based electrochemical electrode. To evaluate the electrical properties of the electrodes, the ohmic resistance of each ink was tested using a multimeter and the obtained values were 18.62 kΩ for the CNT ink, 1.53 Ω for the AgNP ink and 3.53 kΩ for the graphite trace. These results indicate the good conductivity of each synthesized ink used in the fabrication of the CNT electrode. Finally, the electrode was used to measure the electrochemical response of different concentrations of K[Fe(CN)]. Then, a calibration curve was obtained from the voltammograms and linearity was observed in the range of 0.5-3.5 mM. This suggests that the CNT electrode has the potential to be used as an amperometric electrode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2ay00373b | DOI Listing |
PNAS Nexus
January 2025
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFACS Omega
January 2025
School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.
View Article and Find Full Text PDFHeliyon
January 2025
A. K. M. Masud, Department of Industrial and Production Engineering (IPE), Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh.
Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Widely used catalysts for electrocatalytic hydrogen (H) evolution reaction (HER) have high platinum (Pt) contents and show low efficiencies in neutral and alkaline solutions. Herein, a carbon nanotube (CNT) supported Pt catalyst (Pt/CNT45) with 1 wt.% Pt is fabricated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!