Recent studies have shown that current levels of inbreeding, estimated by runs of homozygosity (ROH), are moderate to high in farmed rainbow trout lines. Based on ROH metrics, the aims of our study were to (i) quantify inbreeding effects on female size (postspawning body weight, fork length) and reproduction traits (spawning date, coelomic fluid weight, spawn weight, egg number, average egg weight) in rainbow trout, and (ii) identify both the genomic regions and inbreeding events affecting performance. We analysed the performance of 1346 females under linear animal models including random additive and dominance genetics effects, with fixed covariates accounting for inbreeding effects at different temporal and genomic scales. A significant effect of genome-wide inbreeding () was only observed for spawning date and egg weight, with performance variations of +12.3% and -3.8%, respectively, for 0.1 unit increase in level. At different local genomic scales, we observed highly variable inbreeding effects on the seven traits under study, ranging from increasing to decreasing trait values. As widely reported in the literature, the main scenario observed during this study was a negative impact of recent inbreeding. However, other scenarios such as positive effects of recent inbreeding or negative impacts of old inbreeding were also observed. Although partial dominance appeared to be the main hypothesis explaining inbreeding depression for all the traits studied, the overdominance hypothesis might also play a significant role in inbreeding depression affecting fecundity (egg number and mass) traits in rainbow trout. These findings suggest that region-specific inbreeding can strongly impact performance without necessarily observing genome-wide inbreeding effects. They shed light on the genetic architecture of inbreeding depression and its evolution along the genome over time. The use of region-specific metrics may enable breeders to more accurately manage the trade-off between genetic merit and the undesirable side effects associated with inbreeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046919PMC
http://dx.doi.org/10.1111/eva.13308DOI Listing

Publication Analysis

Top Keywords

inbreeding effects
20
inbreeding
16
rainbow trout
16
genome-wide inbreeding
12
inbreeding depression
12
effects
8
effects female
8
female size
8
reproduction traits
8
traits rainbow
8

Similar Publications

The Arabian Peninsula is considered the initial site of historic human migration out of Africa. The modern-day indigenous Arabians are believed to be the descendants who remained from the ancient split of the migrants into Eurasia. Here, we investigated how the population history and cultural practices such as endogamy have shaped the genetic variation of the Saudi Arabians.

View Article and Find Full Text PDF

SSR marker-based genetic diversity and structure analyses of var. from different populations.

PeerJ

January 2025

Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.

Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.

View Article and Find Full Text PDF

Genetic Stability and Inbreeding in a Synthetic Maize Variety Based on a Finite Model.

Plants (Basel)

January 2025

Departamento de Fitotecnia, Instituto de Horticultura, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Estado de México, Mexico.

A synthetic variety (SV) of maize may not become stable if the sample size representing each parental line (m) is small. This research aimed to evaluate the effect of m on the inbreeding coefficient (IC) of the SV (FSynL) and on the stability of its genetic constitution. An SV formed by randomly mating l unrelated lines whose inbreeding coefficient is F was considered, and a random sample was taken from the genotypic array of the progeny produced by selfing a parental line A1A2 (GA) This sample was visualized as a set of g groups of four plants whose genotypes are all four of the GA and e represented the number of plants that failed to form a group.

View Article and Find Full Text PDF

Genomic Rewilding of Domestic Animals: The Role of Hybridization and Selection in Wolfdog Breeds.

Genes (Basel)

January 2025

Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic.

: The domestication of the grey wolf () and subsequent creation of modern dog breeds have significantly shaped the genetic landscape of domestic canines. This study investigates the genomic effects of hybridization and breeding management practices in two hybrid wolfdog breeds: the Czechoslovakian Wolfdog (CSW) and the Saarloos Wolfdog (SAW). : We analyzed the genomes of 46 CSWs and 20 SAWs, comparing them to 12 German Shepherds (GSHs) and 20 wolves (WLFs), which served as their ancestral populations approximately 70-90 years ago.

View Article and Find Full Text PDF

Assessments of genetic diversity, structure, history, and effective population size ( ) are critical for the conservation of imperiled populations. The lesser prairie-chicken () has experienced declines due to habitat loss, degradation, and fragmentation in addition to substantial population fluctuations with unknown effects on genetic diversity. Our objectives were to: (i) compare genetic diversity across three temporally discrete sampling periods (2002, 2007-2010, and 2013-2014) that are characterized by low or high population abundance; (ii) examine genetic diversity at lek and lek cluster spatial scales; (ii) identify potential bottlenecks and characterize genetic structure and relatedness; and (iii) estimate the regional .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!