Genomic information was included for the first time in the prediction of breeding values for Atlantic salmon within the Australian Salmon Enterprises of Tasmania Pty Ltd selective breeding program in 2016. The process to realize genomic selection in the breeding program begun in 2014 with the scheme finalized and fully implemented for the first time in 2018. The high potential of within family selection to accelerate genetic gain, something not possible using the traditional pedigree-based approach, provided the impetus for implementation. Efficient and effective genotyping platforms are essential for genomic selection. Genotype data from high density arrays revealed extensive persistence of linkage disequilibrium in the Tasmania Atlantic salmon population, resulting in high accuracies of both imputation and genomic breeding values when using imputed data. Consequently, a low-density novel genotype-by-sequence assay was designed and incorporated into the scheme. Through the use of a static high- and dynamic low-density genotyping platforms, an optimized genotyping scheme was devised and implemented such that all individuals in every year class are genotyped efficiently while maximizing the genetic gains and minimizing costs. The increase in the rates of genetic gain attributed to the implementation of genomic selection is significant across both the breeding programs primary and secondary traits. Substantial improvement in the ability to select parents prior to progeny testing is observed across multiple years. The resultant economic impacts for the industry are considerable based on the increases in genetic gain for traits achieved within the breeding program and the use of genomic selection for commercial production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046822PMC
http://dx.doi.org/10.1111/eva.13304DOI Listing

Publication Analysis

Top Keywords

genomic selection
20
atlantic salmon
12
breeding program
12
genetic gain
12
implementation genomic
8
breeding values
8
selection breeding
8
genotyping platforms
8
genomic
7
selection
6

Similar Publications

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

Analysis and validation of serum biomarkers in brucellosis patients through proteomics and bioinformatics.

Front Cell Infect Microbiol

January 2025

Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China.

Introduction: This study aims to utilize proteomics, bioinformatics, and machine learning algorithms to identify diagnostic biomarkers in the serum of patients with acute and chronic brucellosis.

Methods: Proteomic analysis was conducted on serum samples from patients with acute and chronic brucellosis, as well as from healthy controls. Differential expression analysis was performed to identify proteins with altered expression, while Weighted Gene Co-expression Network Analysis (WGCNA) was applied to detect co-expression modules associated with clinical features of brucellosis.

View Article and Find Full Text PDF

Killer whales () have been documented to prey on white sharks (), in some cases causing localised shark displacement and triggering ecological cascades. Notably, a series of such predation events have been reported from South Africa over the last decade, with killer whales specifically targeting sharks' liver. However, observations of these interactions are rare, and knowledge of their frequency across the world's oceans remains limited.

View Article and Find Full Text PDF

Background: To better understand factors associated with virologic response, we retrospectively characterized the HIV proviruses of 7 people with HIV who received long-acting cabotegravir/rilpivirine (CAB/RPV-LA) and were selected according to the following criteria: virologic control achieved despite a history of viral replication on 1 or both corresponding antiretroviral classes (n = 6) and virologic failure (VF) after CAB/RPV-LA initiation (n = 1).

Methods: Last available blood samples before the initiation of CAB/RPV-LA were analyzed retrospectively. Near full-length HIV DNA genome haplotypes were inferred from Nanopore sequencing by the in vivo Genome Diversity Analyzer to search for archived drug resistance mutations (DRMs) and evaluate the frequency and intactness of proviruses harboring DRMs.

View Article and Find Full Text PDF

Protocol to Retrieve Unknown Flanking DNA Using Fork PCR for Genome Walking.

Bio Protoc

January 2025

International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China.

PCR-based genome walking is one of the prevalent techniques implemented to acquire unknown flanking genomic DNAs. The worth of genome walking includes but is not limited to cloning full-length genes, mining new genes, and discovering regulatory regions of genes. Therefore, this technique has advanced molecular biology and related fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!