AI Article Synopsis

Article Abstract

The results of this study showed that the single-nucleotide polymorphism (SNP) sites of the and genes have a certain association with the milk production performance, body size and cashmere performance of Liaoning cashmere goats (LCGs). Through our designed experiment, the potential SNPs of LCG were detected by sequence alignment, and two SNPs were found on two genes. The CC genotype of the gene is the dominant genotype among the three genotypes. The GG genotype of the gene is the dominant genotype among the two genotypes. At the same time, the two genotypes also have good performance in cashmere production and body size. Through the screening of haplotype combination, the milk fat rate  7.6 %, the milk protein rate  5.6 %, the milk somatic cell number  1500   10  mL , the cashmere fineness  15.75  m, the chest girth  105 cm, the chest depth  33 cm, and the waist height  67.5 cm are considered as screening indexes for comprehensive production performance of Liaoning cashmere goats. It is concluded that the GCGC type is the dominant haplotype combination. According to our research data, we found that the biological indicators of Liaoning cashmere goat milk are higher than the national standards, so we think it is very significant to study the milk production performance of our experiment. Further research can be done on goat milk production and body conformation traits around gene and gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051658PMC
http://dx.doi.org/10.5194/aab-65-145-2022DOI Listing

Publication Analysis

Top Keywords

liaoning cashmere
16
cashmere goats
12
milk production
12
production performance
12
single-nucleotide polymorphism
8
body conformation
8
conformation traits
8
body size
8
performance liaoning
8
genotype gene
8

Similar Publications

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Cashmere grows from the secondary hair follicles (SHFs) that synchronously regenerate and degenerate in a circannual rhythm. Most studies examining factors related to cashmere growth have been performed on goat skin. However, the molecular properties and regulators preferentially expressed in SHFs are less clear.

View Article and Find Full Text PDF

Liaoning cashmere goat (LCG) is characterized by the highest individual cashmere yield, but its cashmere fineness tends to be coarse. Therefore, our research primarily focuses on reducing cashmere fineness. Through lipidomics screening and identification, we identified the crucial functional genes FA2H and ELOVL3 associated with cashmere fineness.

View Article and Find Full Text PDF

Liaoning cashmere goat is an important livestock breed in the world. Its economic value is not only reflected in the production of high-quality cashmere, but also its meat production performance is increasingly attracting attention. In order to more comprehensively explore the economic traits of Liaoning cashmere goats, we mainly carry out research on increasing the body size and meat production performance of Liaoning cashmere goats.

View Article and Find Full Text PDF

Liaoning cashmere goat (LCG) is the world's highest cashmere producing white cashmere goat. It has the characteristics of long cashmere fiber, high net cashmere rate, moderate cashmere fineness, white cashmere, strong size, strong adaptability, stable genetic performance, and good effect in improving middle and low production cashmere goat. It is known as "National treasure of China".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!