Background: Arginase enzyme is essential for the catalysis of the last step of the urea cycle, resulting in the conversion of L-arginine to L-ornithine and urea. Arginase deficiency could lead to hyperarginemia, an autosomal recessive disorder of the urea cycle that could result in developmental manifestations after the first year of life, followed by gradually progressive atonic cerebral palsy, spastic quadriplegia, and mental decline. ARG1 mutations have been reported in hyperarginemia patients of Western countries because they exhibited reduced arginase activity. Hence, it is important to assess ARG1 mutations in cerebral palsy cases with hyperarginemia in different populations.

Methods And Results: This study involved two unrelated pediatric patients from two non-consanguineous East Indian families, exhibiting a range of manifestations, including hypotonia of all limbs, mental retardation, and multiple episodes of seizure. The onset of the disease ranged from 1 to 3 years of age. Hyperammonemia (> 250 micromoles) and serum hyperarginemia (> 350 micromoles) were observed in both the patients. Whole-genome sequencing, followed by Sanger sequencing of both the patients confirmed the presence of a homozygous 3' splice site variation in intron 3 of the ARG1 gene (chr6: g.131902357A>T) that affects the invariant AG acceptor splice site of exon 4 (c.330-2A>T; ENST00000356962.2).

Conclusion: The study reported the identification of a novel ARG1 mutation in two different unrelated pediatric cases from Odisha, India associated with hyperarginemia. The pathogenicity of the mutation was robustly supported by the clinical phenotype, complete co-segregation with the disease, and biochemical observations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07499-7DOI Listing

Publication Analysis

Top Keywords

splice site
12
cerebral palsy
12
identification novel
8
arg1 gene
8
pediatric cases
8
cases odisha
8
odisha india
8
urea cycle
8
arg1 mutations
8
unrelated pediatric
8

Similar Publications

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the epidemiological, clinical, and molecular data of mucopolysaccharidosis type II (MPS II) patients and their outcomes using the national registry of patients in the Russian Federation (RF). Materials and Methods: In the retrospective cohort study, the authors included data from the Russian national registry of MPS II. Results: The prevalence of MPS II in RF is 0.

View Article and Find Full Text PDF

Opening of the cardiac voltage-gated Na+ channel (Nav1.5) is responsible for robust depolarization of the cardiac action potential, while inactivation, which rapidly follows, allows for repolarization. Regulation of both the voltage- and time-dependent kinetics of Nav1.

View Article and Find Full Text PDF

In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.

View Article and Find Full Text PDF

Pathogenic variants are associated with neonatal epilepsies, ranging from self-limited neonatal epilepsy to -developmental and epileptic encephalopathy (DEE). In this study, next-generation sequencing was performed, applying a panel of 142 epilepsy genes on three unrelated individuals and affected family members, showing a wide variability in the epileptic spectrum. The genetic analysis revealed two likely pathogenic missense variants (c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!