The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-94804-7_9 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.
Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.
Radiat Oncol
January 2025
Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
Purpose: Based on the demonstration of a circadian rhythm in the human oral mucosa cell cycle, with most cells in the G2/M phase in the afternoon and at night, the present study evaluated the severity of acute radiation esophagitis and treatment outcomes in esophageal squamous cell carcinoma patients receiving radiotherapy (RT) in the daytime versus in the evening.
Methods: From the 488 eligible patients of esophageal squamous cell carcinoma receiving concurrent chemoradiotherapy (CCRT), 369 patients received RT in the daytime (before 19:00) and 119 patients received RT in the evening (after 19:00). The grades of radiation esophagitis (Common Terminology Criteria for Adverse Events version 5.
Nat Cell Biol
January 2025
CNRS UMR144 - UMR3664, Institut Curie, Sorbonne Université, PSL Research University, Paris, France.
Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear.
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.
View Article and Find Full Text PDFNat Commun
January 2025
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!