Methods that allow real-time, longitudinal, intravital detection of the fluorescence distribution and the cellular and vascular responses within tumor and normal tissue are important tools to obtain valuable information when investigating new photosensitizers and photodynamic therapy (PDT) responses. Intravital confocal microscopy using the dorsal skinfold chamber model gives the opportunity to visualize and determine the distribution of photosensitizers within tumor and normal tissue. Next to that, it also allows the visualization of the effect of treatment with respect to changes in vascular diameter and blood flow, vascular leakage, and tissue necrosis, in the first days post-illumination. Here, we describe the preparation of the skinfold chamber model and the intravital microscopy techniques involved, for a strategy we recently introduced, that is, the nanobody-targeted PDT. In this particular approach, photosensitizers are conjugated to nanobodies to target these specifically to cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2099-1_25 | DOI Listing |
Methods Mol Biol
May 2022
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Photodynamic therapy (PDT) is characterized by the local application of laser light, which activates a photosensitizer to lead to the formation of singlet oxygen and other toxic reactive oxygen species, to finally kill cells. Recently, photosensitizers have been conjugated to nanobodies to render PDT more selective to cancer cells. Nanobodies are the smallest naturally derived antibody fragments from heavy-chain antibodies that exist in animals of the Camelidae family.
View Article and Find Full Text PDFMethods Mol Biol
May 2022
Center for Optical Diagnostics and Therapy, Department of Otolaryngology and Head and Neck Surgery, Erasmus MC, Rotterdam, The Netherlands.
Methods that allow real-time, longitudinal, intravital detection of the fluorescence distribution and the cellular and vascular responses within tumor and normal tissue are important tools to obtain valuable information when investigating new photosensitizers and photodynamic therapy (PDT) responses. Intravital confocal microscopy using the dorsal skinfold chamber model gives the opportunity to visualize and determine the distribution of photosensitizers within tumor and normal tissue. Next to that, it also allows the visualization of the effect of treatment with respect to changes in vascular diameter and blood flow, vascular leakage, and tissue necrosis, in the first days post-illumination.
View Article and Find Full Text PDFMethods Mol Biol
May 2022
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Photodynamic therapy (PDT) has a great therapeutic potential because it induces local cellular cytotoxicity upon application of a laser light that excites a photosensitizer, leading to toxic reactive oxygen species. Nevertheless, PDT still is underutilized in the clinic, mostly because of damage induced to normal surrounding tissues. Efforts have been made to improve the specificity.
View Article and Find Full Text PDFMethods Mol Biol
May 2022
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Nanobodies have recently been introduced to the field of photodynamic therapy (PDT) as a very promising strategy to target photosensitizers selectively to cancer cells. Nanobodies are known for their characteristic small size (15 kDa), high specificity, and high binding affinities. These features allow rapid accumulation of nanobody-photosensitizer conjugates at the tumor site and rapid clearance of unbound fractions, and thus illumination for activation is possible 1 or 2 h postinjection.
View Article and Find Full Text PDFNanophotonics
September 2021
Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands.
Nanobody-targeted photodynamic therapy (NB-PDT) has been developed as a potent and tumor-selective treatment, using nanobodies (NBs) to deliver a photosensitizer (PS) specifically to cancer cells. Upon local light application, reactive oxygen species are formed and consequent cell death occurs. NB-PDT has preclinically shown evident success and we next aim to treat cats with oral squamous cell carcinoma (OSCC), which has very limited therapeutic options and is regarded as a natural model of human head and neck SCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!