When investigating the promise of novel therapeutic modalities, the choice of an appropriate and reproducible in vivo model is critical to determine the relevance of the findings. In the case of glioblastoma, a high-grade glioma tumor that is clinically characterized by a high infiltrative pattern, no existing model exactly mimics the clinical features of these tumors. However, a syngeneic rat model of glioblastoma in which F98 cells are orthotopically implanted can recapitulate most of the characteristics of glioma as observed in patients, including a highly aggressive nature, a high degree of infiltration of cancer cells into healthy tissue, and a strong resistance to commonly used treatments including radiotherapy and chemotherapy. Here, we provide a detailed protocol to stereotaxically implant F98 cells in the rat brain and obtain a reproducible and clinically representative glioma model in rodents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2099-1_15DOI Listing

Publication Analysis

Top Keywords

f98 cells
12
model
5
stereotaxic implantation
4
implantation f98
4
cells
4
cells fischer
4
fischer rats
4
rats syngeneic
4
syngeneic model
4
model investigate
4

Similar Publications

CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches.

PLoS One

December 2024

Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada.

Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy.

View Article and Find Full Text PDF

Background/objectives: Although the use of radiation-sensitizing agents has been shown to enhance the effect of radiation on tumor cells, the blood-brain barrier (BBB) impedes these agents from reaching brain tumor sites when provided systemically. Localized methods of sensitizer delivery, utilizing hydrogels, have the potential to bypass the blood-brain barrier. This study examined the ability of photochemical internalization (PCI) of hydrogel-released bleomycin to enhance the growth-inhibiting effects of radiation on multi-cell glioma spheroids in vitro.

View Article and Find Full Text PDF

Introduction: High grade gliomas are characterized by a very poor prognosis due to fatal relapses after surgery. Current chemotherapy is only a palliative care, while potential drug candidates are limited by poor overcoming of the blood-brain barrier.

Aims: A suitable chemotherapeutic approach should be engineered to overcome both the altered blood-brain barrier in the glioma site, as well as the intact one in the brain adjacent to tumor zone, and to target the multiple factors influencing glioma proliferation, differentiation, migration, and angiogenesis.

View Article and Find Full Text PDF

High-frequency irreversible electroporation (H-FIRE), a nonthermal brain tumor ablation therapeutic, generates a central tumor ablation zone while transiently disrupting the peritumoral blood-brain barrier (BBB). We hypothesized that bystander effects of H-FIRE tumor cell ablation, mediated by small tumor-derived extracellular vesicles (sTDEV), disrupt the BBB endothelium. Monolayers of bEnd.

View Article and Find Full Text PDF

Grade IV multiforme glioblastoma (GBM) is an aggressive cancer that remains incurable due to the GBM cells invading and proliferating in the surrounding healthy tissues, even after tumor resection. A new therapeutic paradigm to treat GBM is to attract and accumulate GBM cells in a macroporous hydrogel inserted in the surgical cavity after tumor resection, followed by a targeted high dose of radiotherapy. This work presents a molding-based method to prepare macroporous hydrogels composed of sodium alginate and chitosan, homogeneously mixed in solution using sodium bicarbonate, and subsequently crosslinked with genipin and calcium chloride.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!