GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner.

Cell Mol Life Sci

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina.

Published: May 2022

Objective: Prolonged fasting is a major challenge for living organisms. An appropriate metabolic response to food deprivation requires the activation of the corticotropin-releasing factor-producing neurons of the hypothalamic paraventricular nucleus (PVH neurons), which are a part of the hypothalamic-pituitary-adrenal axis (HPA), as well as the growth hormone secretagogue receptor (GHSR) signaling, whose activity is up- or down-regulated, respectively, by the hormones ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2). Since ghrelin treatment potently up-regulates the HPA axis, we studied the role of GHSR in mediating food deprivation-induced activation of the PVH neurons in mice.

Methods: We estimated the activation of the PVH neurons, using immuno-staining against CRF and the marker of neuronal activation c-Fos in brain sections, and assessed plasma levels of corticosterone and glucose in different pharmacologically or genetically manipulated mouse models exposed, or not, to a 2-day food deprivation protocol. In particular, we investigated ad libitum fed or food-deprived male mice that: (1) lacked GHSR gene expression, (2) had genetic deletion of the ghrelin gene, (3) displayed neurotoxic ablation of the hypothalamic arcuate nucleus, (4) were centrally treated with an anti-ghrelin antibody to block central ghrelin action, (5) were centrally treated with a GHSR ligand that blocks ghrelin-evoked and constitutive GHSR activities, or (6) received a continuous systemic infusion of LEAP2(1-12).

Results: We found that food deprivation results in the activation of the PVH neurons and in a rise of the ghrelin/LEAP2 molar ratio. Food deprivation-induced activation of PVH neurons required the presence and the signaling of GHSR at hypothalamic level, but not of ghrelin. Finally, we found that preventing the food deprivation-induced fall of LEAP2 reverses the activation of the PVH neurons in food-deprived mice, although it has no effect on body weight or blood glucose.

Conclusion: Food deprivation-induced activation of the PVH neurons involves ghrelin-independent actions of GHSR at hypothalamic level and requires a decrease of plasma LEAP2 levels. We propose that the up-regulation of the actions of GHSR associated to the fall of plasma LEAP2 level are physiologically relevant neuroendocrine signals during a prolonged fasting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072678PMC
http://dx.doi.org/10.1007/s00018-022-04302-5DOI Listing

Publication Analysis

Top Keywords

pvh neurons
28
activation pvh
24
food deprivation-induced
20
deprivation-induced activation
16
food deprivation
12
ghsr
9
activation
9
neurons
9
food
8
neurons hypothalamic
8

Similar Publications

Central corticotropin releasing hormone receptor 2 may participate in sex differential regulation of cold-evoked eating behavior.

Neuroscience

February 2025

Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:

Corticotropin-releasing factor (CRF) is an important stress hormone, and because of the different distributions and functions of its receptors, CRF has various effects on the stress response of animals. CRF receptor 2 (CRFR2) is a functional receptor of CRF that may be related to appetite regulation and sex differences. In this study, male and female C57BL/6 mice were exposed to an ambient temperature of 4 °C, and feed intake were determined.

View Article and Find Full Text PDF

Oxytocin (OT) neurons in the hypothalamic paraventricular nucleus (PVH) play an important role in various physiological and behavioral processes, including the initiation of milk ejection and the regulation of maternal behaviors. However, their activity patterns at the single-cell level remain poorly understood. Using microendoscopic Ca imaging in freely moving mouse dams, we demonstrate highly correlated pulsatile activity among individual OT neurons during lactation.

View Article and Find Full Text PDF

Oxytocin neurons in the paraventricular and supraoptic hypothalamic nuclei bidirectionally modulate food intake.

bioRxiv

November 2024

Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, USA.

Oxytocin (OT) is a neuropeptide produced in the paraventricular (PVH) and supraoptic (SON) nuclei of the hypothalamus. Either peripheral or central administration of OT suppresses food intake through reductions in meal size. However, pharmacological approaches do not differentiate whether observed effects are mediated by OT neurons located in the PVH or in the SON.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRH neurons in activation of the hypothalamic-pituitary-adrenal (HPA) axis is well established, the distribution and function of CRH-expressing neurons across the whole central nervous system are less understood. Stress responses activate complex neural networks, which differ depending on the type of stressor and on the sex of the individual.

View Article and Find Full Text PDF

During postnatal life, leptin specifies neuronal inputs to the paraventricular nucleus of the hypothalamus (PVH) and activates agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms impact refinement of sensory circuits, but whether leptin-mediated postnatal neuronal activity specifies hypothalamic neural projections is largely unexplored. Here, we used chemogenetics to manipulate the activity of AgRP neurons during a discrete postnatal critical period and evaluated the development of AgRP inputs to the PVH and descending efferent outflow to the dorsal vagal complex (DVC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!