Mechanistic investigations of hirsutene biosynthesis catalyzed by a chimeric sesquiterpene synthase from Steccherinum ochraceum.

Fungal Genet Biol

Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. Electronic address:

Published: July 2022

The high efficiency and elegance of terpene synthases is fascinating in constructing the molecular skeleton of complicated terpenoids with multiple chiral centers. Although the rapid development of sequencing technology has led to the discovery of an increasing number of terpene synthases, the cyclization mechanisms of some terpene synthases remains elusive. Here, we report that a chimeric sesquiterpene synthase from Steccherinum ochraceum is responsible for the biosynthesis of (+)-hirsutene, a linear triquinane sesquiterpene. Structural validation, and isotope labeling experiments demonstrate that the biosynthesis of (+)-hirsutene employs an unusual cyclization mode, involving three different cyclization processes (C1-C11, C2-C9, C3-C6), one intramolecular 1,2-hydride shift (C9-C10) and three successive 1,2-alkyl shifts to construct the 5-5-5 fused ring skeleton of (+)-hirsutene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2022.103700DOI Listing

Publication Analysis

Top Keywords

terpene synthases
12
chimeric sesquiterpene
8
sesquiterpene synthase
8
synthase steccherinum
8
steccherinum ochraceum
8
biosynthesis +-hirsutene
8
mechanistic investigations
4
investigations hirsutene
4
hirsutene biosynthesis
4
biosynthesis catalyzed
4

Similar Publications

The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".

View Article and Find Full Text PDF

From Monocyclization to Pentacyclization: A Versatile Plant Cyclase Produces Diverse Sesterterpenes with Anti-Liver Fibrosis Potential.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.

A prolific multi-product sesterterpene synthase CbTPS1 is characterized from the medicinal Brassicaceae plant Capsella bursa-pastoris. Twenty different sesterterpenes including 16 undescribed compounds, possessing 10 different mono-/di-/tri-/tetra-/penta-carbocyclic skeletons, including the unique 15-membered macrocyclic and 24(15→14)-abeo-capbuane scaffolds, are isolated and structurally elucidated from engineered Escherichia coli strains expressing CbTPS1. Site-directed mutagenesis assisted by molecular dynamics simulations resulted in the variant L354M with up to 13.

View Article and Find Full Text PDF

Molecular and biochemical evolution of casbene-type diterpene and sesquiterpene biosynthesis in rice.

J Integr Plant Biol

January 2025

National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Casbene and neocembrene are casbene-type macrocyclic diterpenes; their derivatives play significant roles in plant defense and have pharmaceutical applications. We had previously characterized a casbene synthase, TERPENE SYNTHASE 28 (OsTPS28), in rice (Oryza sativa). However, the mechanism of neocembrene biosynthesis in rice remained unclear.

View Article and Find Full Text PDF

Characterization and functional analysis of type III polyketide synthases in Selaginella moellendorffii.

Planta

January 2025

Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.

The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization.

View Article and Find Full Text PDF

Terpene synthases produce a wide number of hydrocarbon skeletons by controlling intramolecular rearrangements of allylic pyrophosphate subtrates reactive carbocation intermediates. Here we review recent research focused on engineering terpene synthases and modifying their substrates to rationally manipulate terpene catalyisis. Molecular dynamic simulations and solid state X-ray crystallography are powerful techniques to identify substrate binding modes, key active site residues for substrate folding, and the location of active site water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!