Algal-bacterial aerobic granular sludge (AGS) was applied for hexavalent chromium (Cr(VI)) biosorption from wastewater and the dynamic distribution and mobility of different metals in granules were systematically examined before and after hydrothermal treatment. The loaded Cr on algal-bacterial AGS was found to mainly localize in microbial cells and mineral particles; little Cr was detected in extracellular polymeric substances (EPS) after 6 h contact, which increased to 5.1% after 24 h biosorption. Along with Cr localization, 9.3-22.8% of Mg and 11.5-26.4% of Ca in algal-bacterial AGS were released from loosely bound EPS, then replenished to maintain their stable proportion in EPS, probably contributing to granular stability. In addition, chemical fractionation showed that the Cr mobility in algal-bacterial AGS, indicated by a low mobility factor of 4.7%, decreased to 1.4% with the co-existence of mineral salts and acetate during biosorption, which was further declined to 0 after hydrothermal treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127229DOI Listing

Publication Analysis

Top Keywords

hydrothermal treatment
12
algal-bacterial ags
12
hexavalent chromium
8
loaded algal-bacterial
8
algal-bacterial aerobic
8
aerobic granular
8
granular sludge
8
algal-bacterial
5
changes distribution
4
distribution chemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!