Poly-caprolactone is one of the most promising biocompatible polymers on the market, in particular for temporary devices that are not subjected to high physiological loads. Even if completely resorbable in various biological environments, poly-caprolactione does not play any specific biological role in supporting tissue regeneration and for this reason has a limited range of possible applications. In this preliminary work, for the first time l-dopa and fibroin have been combined with electrospun poly-caprolactone fibers in order to induce bioactive effects and, in particular, stimulate the proliferation, adhesion and osteoconduction of the polymeric fibers. Results showed that addition of low-molecular weight fibroin reduces the mechanical strength of the fibers while promoting the formation of mineralized deposits, when testedwith KUSA-A1 mesenchymal cells. l-dopa, on the other hand, improved the mechanical properties and stimulated the formation of agglomerates of mineralized deposits containing calcium and phosphorous with high specific volume. The combination of the two substances resulted in good mechanical properties and higher amounts of mineralized deposits formed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ac6c68 | DOI Listing |
J Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.
View Article and Find Full Text PDFIn this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.
View Article and Find Full Text PDFEquine Vet J
January 2025
Setor de Patologia Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
Background: In horses, systemic calcinosis is a rare syndrome characterised by muscle lesion associated with the mineralisation of large muscle groups or other organs, in the absence of an alternative cause for the calcification, such as toxic, enzootic or metabolic. Molecular and histopathological aspects of the disease are still poorly elucidated.
Objectives: To describe the epidemiological, pathological and molecular aspects of systemic calcinosis in a convenience sample of six horses submitted to necropsy in the Southern and Midwestern regions of Brazil.
Sci Rep
January 2025
Grant Institute, School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK.
Glendonites (from the precursor of ikaite, CaCO.6HO) preferentially precipitate within sediments in cold waters (- 2 to 7°C) via either organotrophic or methanogenic sulphate reduction. Here, we report the first occurrence of possible glendonites associated with the end Permian mass extinction in the earliest Triassic (ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!