In this study, combined Dark Target and Deep Blue (DTB) aerosol optical depth at 550 nm (AOD) data the Moderate Resolution Imaging Spectroradiometer (MODIS) flying on the Terra and Aqua satellites during the years 2003-2020 are used as a reference to assess the performance of the Copernicus Atmosphere Monitoring Services (CAMS) and the second version of Modern-Era Retrospective analysis for Research and Applications (MERRA-2) AOD over Bangladesh. The study also investigates long-term spatiotemporal variations and trends in AOD, and determines the relative contributions from different aerosol species (black carbon: BC, dust, organic carbon: OC, sea salt: SS, and sulfate) and anthropogenic emissions to the total AOD. As the evaluations suggest higher accuracy for CAMS than for MERRA-2, CAMS is used for further analysis of AOD over Bangladesh. The annual mean AOD from both CAMS and MODIS DTB is high (>0.60) over most parts of Bangladesh except for the eastern areas of Chattogram and Sylhet. Higher AOD is observed in spring and winter than in summer and autumn, which is mainly due to higher local anthropogenic emissions during the winter to spring season. Annual trends from 2003-2020 show a significant increase in AOD (by 0.006-0.014 year) over Bangladesh, and this increase in AOD was more evident in winter and spring than in summer and autumn. The increasing total AOD is caused by rising anthropogenic emissions and accompanied by changes in aerosol species (with increased OC, sulfate, and BC). Overall, this study improves understanding of aerosol pollution in Bangladesh and can be considered as a supportive document for Bangladesh to improve air quality by reducing anthropogenic emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.115097 | DOI Listing |
Environ Pollut
December 2024
College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China. Electronic address:
Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
In a hydrogen-based economy future, hydrogen leakage is becoming an environmental concern. Ruminants naturally produce small amounts of hydrogen, which is emitted in the environment along with other fermentation gases, such as the GHG methane and carbon dioxide. Here, for the first time, we estimated hydrogen emissions from the global ruminant livestock at 527 kt/yr (95% CI: 399, 654), or about 3.
View Article and Find Full Text PDFChemosphere
December 2024
Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, 21941-909, Brazil. Electronic address:
Peri-urban conserved natural or semi-natural areas provide several ecosystem services and assist in reducing air pollution in cities. The aim of this study is to assess the contribution to the improvement of air quality of a small area (<1 km) adjacent to a city in the Metropolitan Region of Rio de Janeiro (Brazil), which is seriously affected by vehicular and industrial emissions of pollutants. Hydrocarbon (HC) and carbonyl compounds (CC) levels were determined, by employing TO-15 and TO-11A US EPA Methods, respectively, in both the urban and green areas.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Bisphenol A (BPA) is a high-production-volume plastic chemical, with ∼98% of its usage in China allocated to producing polycarbonate and epoxy resin, and its fugitive release threatens ecosystems. However, knowledge of its anthropogenic cycles, environmental emissions, and ecological risks remains incomplete, hindering effective plastic lifecycle management. Herein, material flow analysis, multimedia environmental modeling, and ecological risk assessment were integrated to comprehensively map BPA dynamics in China.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Shaanxi Key Laboratory of Environmental Engineering, School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Domestic waste treatment is an important source of anthropogenic greenhouse gas emissions, and it is of great significance to clarify the carbon emission intensity of each link before and after waste classification treatment to help with the "double carbon" goal. Based on the relevant data on domestic waste generation in Baoji City in 2021, combined with the integrated urban and rural domestic waste disposal model, the carbon emission intensity of urban and rural domestic waste treatment before and after classification was calculated using the IPCC inventory guide carbon emission factor method. The results showed that by reducing the proportion of simple landfills in rural areas, the carbon reduction could reach 59 451.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!