A mitochondria-targeted near-infrared fluorescent probe for detection and imaging of HSO in living cells.

Spectrochim Acta A Mol Biomol Spectrosc

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China. Electronic address:

Published: October 2022

Sulfur dioxide, an essential gas signaling molecule mainly produced in mitochondria, plays important roles in many physiological and pathological processes. Herein, a near-infrared fluorescent probe, A1, with good mitochondria targeting ability was developed for colorimetric and fluorescence detection of HSO. Probe A1 has a conjugated cyanine structure that can selectively react with HSO through the nucleophilic addition. The reaction with HSO destroys the conjugated structure of probe A1, resulting in fluorescence quenching, and accompaniedby color change of probe A1 solution from purple-red to colorless. Probe A1 showed high selectivity and good sensitivity to HSO in PBS. And the limit of detection was calculated to be 1.28 and 0.037 μM for colorimetry and fluorescence spectrophotometry respectively. In addition, probe A1 mainly entered the mitochondria in living cells, and was successfully used for imaging the exogenous/endogenous HSO in cells. These results suggest the potential applications of probe A1 in biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121305DOI Listing

Publication Analysis

Top Keywords

near-infrared fluorescent
8
probe
8
fluorescent probe
8
living cells
8
hso
6
mitochondria-targeted near-infrared
4
probe detection
4
detection imaging
4
imaging hso
4
hso living
4

Similar Publications

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Harnessing LRET in a rationally designed "sandwich" fluorescent probe for selective ClO sensing.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, PR China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.

Article Synopsis
  • Upconversion nanoparticles (UCNPs) are advanced light-emitting materials that use near-infrared light for sensing, helping to avoid issues caused by natural fluorescence in biological samples.
  • Traditional UCNP designs have limitations in accurately locating luminescent doped ions within their structure, leading to background noise and inefficient light emission.
  • The new core-middle-shell UCNPs-IR820 design improves luminescence detection by incorporating a "sandwich" structure that enhances energy transfer, allowing for effective signaling changes in response to specific analytes like ClO.
View Article and Find Full Text PDF

Harmonized technical standard test methods for quality evaluation of medical fluorescence endoscopic imaging systems.

Vis Comput Ind Biomed Art

January 2025

School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.

Fluorescence endoscopy technology utilizes a light source of a specific wavelength to excite the fluorescence signals of biological tissues. This capability is extremely valuable for the early detection and precise diagnosis of pathological changes. Identifying a suitable experimental approach and metric for objectively and quantitatively assessing the imaging quality of fluorescence endoscopy is imperative to enhance the image evaluation criteria of fluorescence imaging technology.

View Article and Find Full Text PDF

Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction B (n, alpha) Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely -Carborane (Carb) or 1,2-dihexyl--Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!