Dynamic vapor microextraction of ignitable liquid from casework containers.

Forensic Sci Int

Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO 80305, USA. Electronic address:

Published: July 2022

Dynamic vapor microextraction (DVME) is a headspace concentration method that can be used to collect ignitable liquid (IL) from fire debris onto chilled adsorbent capillaries. Unlike passive headspace concentration onto activated carbon strips (ACSs) that must be eluted with a toxic solvent (carbon disulfide), DVME employs a relatively benign solvent (acetone) to recover the adsorbed IL residue, and each headspace collection is monitored for breakthrough. Here, for the first time, we extend DVME to casework containers while exploring a realistic range of oven temperatures and collection volumes. We investigated metal cans sealed with friction lids (container 1), metal cans sealed within polymer bags (container 2), and glass jars sealed with two-piece lids (container 3). Without additional containment, container 1 was found to leak so excessively that flow through the capillary was unreliable. Therefore, for containers 2 and 3 only, we determined the total number of target compounds collected from 50% weathered gasoline for oven temperatures from 54 °C to 96 °C and collection volumes from 47 standard cubic centimeters (scc) to 90 scc. Only high-volatility species with retention times (t)< n-decane on a non-polar column were recovered from polymer bags, whereas headspace concentration from glass jars led to the recovery of target compounds across the entire volatility range. DVME at 90 °C from 2-mL containers showed that the presence of polymer bag material leads to IL vapor losses, particularly for low-volatility species with t> n-decane. DVME was strongly influenced by the casework container, whereas oven temperature and collection volume had a minor influence for the IL samples explored here.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2022.111315DOI Listing

Publication Analysis

Top Keywords

dynamic vapor
8
vapor microextraction
8
ignitable liquid
8
casework containers
8
headspace concentration
8
oven temperatures
8
collection volumes
8
metal cans
8
cans sealed
8
lids container
8

Similar Publications

Tropical peatlands are significant sources of methane (CH₄), but their contribution to the global CH₄ budget remains poorly quantified due to the lack of long-term, continuous and high-frequency flux measurements. To address this gap, we measured net ecosystem CH exchange (NEE-CH) using eddy covariance technique throughout the conversion of a tropical peat swamp forest to an oil palm plantation. This encompassed the periods before, during and after conversion periods from 2014 to 2020, during which substantial environmental shifts were observed.

View Article and Find Full Text PDF

Tailoring selenization dynamics: How heating rate manipulates nucleation and growth boosts efficiency in kesterite solar cells.

J Chem Phys

January 2025

Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics.

View Article and Find Full Text PDF

A porous and flexible Zn-MOF was synthesized under solvothermal conditions by using the ligand 2,5-furandicarboxylic acid (2,5-FDA). This flexible Zn-MOF demonstrates a temperature-triggered breathing effect. At low temperature (100 K), we obtained the high-symmetry MOF denoted as with a unit cell volume of 1958 Å, characterized by triangular narrow pore (np) channels.

View Article and Find Full Text PDF

Premelted-Substrate-Promoted Selective Etching Strategy Realizing CVD Growth of High-Quality Graphene on Dielectric Substrates.

ACS Appl Mater Interfaces

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!