Role of the Rigid Host Structure in Narrow-Band Green Emission of Eu in RbNa(LiSiO): Insights into Electron-Phonon Coupling.

Inorg Chem

Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, Anhui, China.

Published: May 2022

Eu-activated alkali-lithosilicate phosphors exhibit narrow-band emissions that are attractive to high color-rendition and wide color-gamut displays. The microscopic mechanism behind the small emission bandwidth is not presently understood. Here, we report an explicit calculation of the vibronic process occurring in the narrow-band green emission of RbNa[LiSiO]:Eu. We show that due to the high rigidity of the host material, the structural strain induced by the localized Eu 4f-5d excitation is distributed among the atoms far beyond the first coordination shell and hence reduces the local structural relaxation around Eu. The emission bandshape is thus mainly controlled by the coupling of the electronic transition with the phonon modes associated with motions of host constituent atoms, which was further validated by the good agreement of the calculated bandshape with the experiment. The results provide insights into the generation of narrow-band emission and improve our knowledge on electron-phonon coupling of 4f-5d transitions in phosphors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c00868DOI Listing

Publication Analysis

Top Keywords

narrow-band green
8
green emission
8
electron-phonon coupling
8
emission
5
role rigid
4
rigid host
4
host structure
4
narrow-band
4
structure narrow-band
4
emission rbnalisio
4

Similar Publications

Exploring new photoexcited phosphors has attracted attention for improving the performance of white LEDs. Here, an NaBaAlBOCl:Eu phosphor with high color purity (94.11%) has been synthesized.

View Article and Find Full Text PDF

Band selection is a common approach to reduce the data dimensionality of hyperspectral imagery. It extracts several bands of importance in some sense by taking advantage of high spectral correlation. In medical imaging, narrow-band imaging (NBI) is an imaging technique for endoscopic diagnostic medical tests, where light of specific blue and green wavelengths is used to enhance the detail of certain aspects of the surface of the mucosa.

View Article and Find Full Text PDF

With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr QD surface.

View Article and Find Full Text PDF

Introduction: The early detection of esophageal cancer is crucial to enhancing patient survival rates, and endoscopy remains the gold standard for identifying esophageal neoplasms. Despite this fact, accurately diagnosing superficial esophageal neoplasms poses a challenge, even for seasoned endoscopists. Recent advancements in computer-aided diagnostic systems, empowered by artificial intelligence (AI), have shown promising results in elevating the diagnostic precision for early-stage esophageal cancer.

View Article and Find Full Text PDF

Wide color gamut display has become a new generation of display technology because of its good color saturation. However, the low quantum efficiency and wide half peak width of narrow-band green phosphors are still the main barriers in their development and application. This work addresses these challenges by using Mn as the luminescent center and constructing efficient Eu → Mn energy transfer in NaMgAlO (NMAO) matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!