Secondary organic aerosol (SOA) data gathered in environmental chambers (ECs) have been used extensively to develop parameters to represent SOA formation and evolution. The EC-based parameters are usually constrained to less than one day of photochemical aging but extrapolated to predict SOA aging over much longer timescales in atmospheric models. Recently, SOA has been increasingly studied in oxidation flow reactors (OFRs) over aging timescales of one to multiple days. However, these OFR data have been rarely used to validate or update the EC-based parameters. The simultaneous use of EC and OFR data is challenging because the processes relevant to SOA formation and evolution proceed over very different timescales, and both reactor types exhibit distinct experimental artifacts. In this work, we show that a kinetic SOA chemistry and microphysics model that accounts for various processes, including wall losses, aerosol phase state, heterogeneous oxidation, oligomerization, and new particle formation, can simultaneously explain SOA evolution in EC and OFR experiments, using a single consistent set of SOA parameters. With α-pinene as an example, we first developed parameters by fitting the model output to the measured SOA mass concentration and oxygen-to-carbon (O:C) ratio from an EC experiment (<1 day of aging). We then used these parameters to simulate SOA formation in OFR experiments and found that the model overestimated SOA formation (by a factor of 3-16) over photochemical ages ranging from 0.4 to 13 days, when excluding the abovementioned processes. By comprehensively accounting for these processes, the model was able to explain the observed evolution in SOA mass, composition (i.e., O:C), and size distribution in the OFR experiments. This work suggests that EC and OFR SOA data can be modeled consistently, and a synergistic use of EC and OFR data can aid in developing more refined SOA parameters for use in atmospheric models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.1c08520 | DOI Listing |
Cureus
December 2024
Department of Community Medicine, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan, Bhubaneswar, IND.
Introduction Human papillomavirus (HPV) is the most common causative agent for cervical cancer (CC) in women. Despite extensive initiatives, the acceptance and implementation of vaccinations have remained inadequate, hindering a significant impact on public health outcomes. This study aimed to provide a comprehensive assessment of the knowledge, awareness, and practices (KAP) scores of medical and dental students regarding HPV infection and vaccination.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
January 2025
Faculty of Arts and Science, Kyushu University.
Personal objects are known to have several psychological effects on their owners. However, the formation of a sense of object ownership (SoOO) remains unclear. This study tested the hypothesis that a sense of agency (SoA) is related to the formation of SoOO.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Environment and Climate, Institute for Environmental and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, 51143, China.
Higher alkanes are a major class of intermediate volatile organic compounds (IVOCs) emitted by vehicles, which have been considered as important precursors of secondary organic aerosol (SOA) in urban area. Dynamometer experiments were conducted to characterize emissions from gasoline and diesel vehicles in China. Three types of higher alkanes, namely acyclic, cyclic, and bicyclic alkanes, were explicitly quantified through the novel proton transfer reaction time-of-flight mass spectrometer with NO ionization (NO PTR-ToF-MS) with time response of 1 second.
View Article and Find Full Text PDFFolia Morphol (Warsz)
January 2025
Department of Anatomy, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
Background: The rapid growth of aesthetic medicine has led to an increased demand for non-surgical cosmetic procedures in the frontal region of the face. However, alongside this rise in popularity, there is a growing awareness of the potential complications associated with these procedures especially connected with fillers. The intricate vascular anatomy of the forehead, specifically the supratrochlear (STA) and supraorbital (SOA) arteries, poses significant risks if not thoroughly understood.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:
Coal gasification slag (CGS) is a challenging solid waste due to the presence of highly toxic heavy metals, which pose significant risks to environmental and human health. CGS cannot be freely reused or disposed of, creating considerable obstacles to solid waste resource utilization. This study presents a novel method for heavy metal removal from CGS through a separation-oxidation-acid washing (SOA) process, which effectively recycles residual carbon (RC) while minimizing the risk of heavy metal leakage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!