Objective: This paper presents the design of an electrically small circularly polarized (CP) 3 × 3 mm antenna system as an intraocular unit for retinal prosthesis application.
Methods: The system is operating in ISM and ultra-wideband (UWB) bands to target high programmability of retina stimulation and recording, respectively. The electrical dimensions, including the ground plane, are λ/41 × λ/41 × λ/191. Physical limitations of the antenna are discussed based on Hansen and Collin's limitations. The proposed wire patch antenna exhibits wideband characteristics by combining multiple modes of the patch antenna in the presence of an interface PCB circuit.
Results: By loading polyimide encapsulated patch with stubs, dominant TM mode is combined with the higher order modes TM-TM to exhibit wide -10 dB impedance bandwidth of 2-11 GHz. Annular rings and shorting pins in the ground plane provide CP radiation at 2.45, 5.8, and 8 GHz with 3-dB axial-ratio bandwidth of 0.3, 0.16, and 1.2 GHz, and far-field left hand circularly polarized (LHCP) gain of -18.4, -7.6, and -4.7 dBic, respectively, in broadside direction. A biocompatible antenna system is designed using Ansys HFSS in the presence of a detailed multilayer canonical eye model. Additionally, it is examined in an anatomical HFSS head model. Near and far-field electric field distribution is studied along with peak 1-g average specific absorption rate (SAR) calculations.
Conclusion: The proposed antenna is fabricated, and the performance, including coupled power from an external antenna, is measured in a custom made eye model including head phantom. A reasonable agreement is obtained between simulated and measured results.
Significance: To generate an artificial vision, image perception capability could be improved with implantable UWB communication systems that feature particularly high data-rate and small size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2022.3171842 | DOI Listing |
Mater Horiz
January 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing.
View Article and Find Full Text PDFFree-space optical (FSO) communication has the advantages of large bandwidth and high security and being license-free, making it the preferred solution for addressing the "last kilometer" of information transmission. However, it is susceptible to fluctuations in the received optical power (ROP) due to atmospheric turbulence and pointing errors, resulting in the inevitable free-space optical communication transmission performance degradation. In this work, we experimentally verified the turbulence resistance of the cylindrical vector beam (CVB) over a 3 km long free-space field trial link.
View Article and Find Full Text PDFOn-chip spin-exchange relaxation-free (SERF) atomic magnetometers (AMs) require linearly polarized light as detection light whose wavelength is 795 nm. In this study, we propose and demonstrate an inverse-designed linearly polarized light emitter suitable for 795 nm wavelength light. Due to the fact that the electric field of the TE fundamental mode is almost a beam of linearly polarized light, we verified whether the emission light obtained when only coupling efficiency is taken as the objective function is linearly polarized.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Circularly Polarized Light (CPL)-dependent anomalous photovoltaic effect (APVE), characterized by light helicity-manipulated steady photocurrent and above-bandgap photovoltage, has demonstrated significant potential in the fields of photoelectronic and photovoltaics. However, exploiting CPL-dependent APVE in chiral hybrid perovskites, a promising family with intrinsic chiroptical activity and non-centrosymmetric structure, remains challenging. Here, leveraging the flexible structural design of chiral alternating cations intercalation-type perovskites, CPL-dependent APV, for the first time, is achieved in chiral perovskites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!