The branches of the porcine subclavian artery are frequently used in endovascular stroke training and research. This study aimed to determine a porcine weight group, in which the arterial diameters most closely match human cerebral artery diameters, and thus optimize the porcine in-vivo model for neuroendovascular purposes. A group of 42 German Landrace swine (45-74 kg) was divided into four subgroups according to their weight. Angiographic images of the swine were used to determine the arterial diameter of the main branches of the subclavian artery: axillary artery, brachial artery, external thoracic artery, subscapular artery (at two different segments), suprascapular artery, caudal circumflex humeral artery, thoracodorsal artery, and circumflex scapular artery. The porcine arterial diameters were correlated with animal weight and compared to luminal diameters of human arteries which are commonly involved in stroke: internal carotid artery, basilar artery, vertebral artery, middle cerebral artery and M2 branches of the middle cerebral artery. Swine weight was positively correlated with porcine arterial diameter. The most conformity with human arterial diameters was found within the two heavier porcine groups (55-74 kg). We suggest the use of swine with a weight between 55-59.7 kg, as lighter animals show less similarity with human arterial diameters and heavier animals could cause more problems with manipulation and handling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064086 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268005 | PLOS |
BMC Complement Med Ther
January 2025
Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.
Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.
Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).
BMC Nephrol
January 2025
Department of Internal Medicine II, Universitätsmedizin (Halle), Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.
Background: Managing acute myocardial infarction (AMI) in patients with chronic kidney disease (CKD) or end-stage renal disease on dialysis (renal replacement therapy, RRT) presents challenges due to elevated complication risks. Concerns about contrast-related kidney damage may lead to the omission of guideline-directed therapies like percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) in this population.
Methods: We analysed German-DRG data of 2016 provided by the German Federal Bureau of Statistics (DESTATIS).
BMC Emerg Med
January 2025
Department of Emergency Medicine, Recep Tayyip Erdoğan University Training and Research Hospital, Rize, 53020, Turkey.
Background: The incidence of contrast-induced acute kidney injury (CI-AKI) in the general population ranges from 0.6 to 2.3%, whereas for specific high-risk patients, the incidence can reach more than 30-40%.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
Objective: Dural arteriovenous fistulas (DAVFs) with deep venous drainage (DVD) (DAVFs-DVD) are characteristically associated with non-hemorrhagic neurological deficits, most notably cognitive impairment. Large studies have yet to thoroughly characterize these DAVFs. We conducted an analysis of the largest cohort of DAVFs-DVD to provide a comprehensive characterization of this specific subset.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consuming and costly. Applying deep learning might yield a faster and more accurate stenosis assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!