Plasmon-induced diazonium reduction was used to graft an organic semiconductor, namely oligo(bisthienylbenzene) (BTB), onto square arrays of gold nanoparticles (NPs) of various diameters. Grafting was evidenced by scanning electron microscopy (SEM) measurements by the extinction spectra of the localized surface plasmon resonance, as well as by Raman and energy dispersive X-ray (EDX) spectroscopies. We show that BTB is selectively deposited around the NPs. The thickness of the layer increases with increasing irradiation time and reaches a limit which depends on the size of the NPs with the thicker organic layers being generated for smaller NPs. Under polarized irradiation, BTB growth is strongly anisotropic. Starting from arrays with square gratings and spherical NPs, long-range plasmon-induced anisotropic growth makes it possible to generate in the direction of the polarized light, lines, columns, or lines and columns of NPs connected by an organic semiconductor. These results demonstrate that the growth is due to hot electrons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c00791DOI Listing

Publication Analysis

Top Keywords

organic semiconductor
12
long-range plasmon-induced
8
plasmon-induced anisotropic
8
anisotropic growth
8
gold nanoparticles
8
lines columns
8
nps
6
growth
4
organic
4
growth organic
4

Similar Publications

Constructing Two-Dimensional, Ordered Networks of Carbon-Carbon Bonds with Precision.

Precis Chem

January 2025

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne.

View Article and Find Full Text PDF

This research aims to develop YCuMnO double perovskite, using a citrate auto combustion method, to be used as a photocatalyst for the degradation of organic dyes and antibiotics. XRD and Raman characterization revealed the synthesis of pure-phase YCuMnO double perovskite. The X-ray photoelectron spectroscopy results show the presence of +4 and +2 oxidation states of Mn and Cu ions.

View Article and Find Full Text PDF

Ultrasensitive Flexible NO Sensors with Remote-Controllable ADC-Electropolymerized Conducting Polymers on Plastic.

ACS Nano

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Alternating- and direct-current (ADC) bipolar electropolymerization (EP) offers an efficient and scalable approach for the lateral synthesis of conjugated macromolecules, enabling the simultaneous polymerization and deposition of large conducting polymer films with intriguing fractal-like ramified topographies onto arbitrary insulating substrates under remote control. In this study, we presented the remote synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT):anion sensing films on a plastic substrate, aimed at their use in flexible nitrogen dioxide (NO) gas sensors. Notably, the PEDOT:ClO films exhibited excellent gas-sensing characteristics, with a sensitivity of 54.

View Article and Find Full Text PDF

Organic field-effect transistors (OFETs) integrated with commercial transistors are promising sensing platforms characterized by enhanced device uniformity, functional diversity, and electrical output stability. Aptamers with charged backbones and a high affinity for target molecules are anticipated to mitigate the limitations imposed by Debye screening in physiological environments with high ionic strength, thereby facilitating specific biological recognition in complex surroundings. This study presents two reliable OFET aptasensors for vascular endothelial growth factor (VEGF) and offers a systematic comparison of their performance.

View Article and Find Full Text PDF

Sea urchin-like covalent organic frameworks/TiO heterostructure for enhanced photocatalytic CO conversion.

J Colloid Interface Sci

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytic reduction of CO to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!