Background And Objectives: With the current advanced data-driven approach to health care, machine learning is gaining more interest. The current study investigates the added value of machine learning to linear regression in predicting anastomotic leakage and pulmonary complications after upper gastrointestinal cancer surgery.
Methods: All patients in the Dutch Upper Gastrointestinal Cancer Audit undergoing curatively intended esophageal or gastric cancer surgeries from 2011 to 2017 were included. Anastomotic leakage was defined as any clinically or radiologically proven anastomotic leakage. Pulmonary complications entailed: pneumonia, pleural effusion, respiratory failure, pneumothorax, and/or acute respiratory distress syndrome. Different machine learning models were tested. Nomograms were constructed using Least Absolute Shrinkage and Selection Operator.
Results: Between 2011 and 2017, 4228 patients underwent surgical resection for esophageal cancer, of which 18% developed anastomotic leakage and 30% a pulmonary complication. Of the 2199 patients with surgical resection for gastric cancer, 7% developed anastomotic leakage and 15% a pulmonary complication. In all cases, linear regression had the highest predictive value with the area under the curves varying between 61.9 and 68.0, but the difference with machine learning models did not reach statistical significance.
Conclusion: Machine learning models can predict postoperative complications in upper gastrointestinal cancer surgery, but they do not outperform the current gold standard, linear regression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544929 | PMC |
http://dx.doi.org/10.1002/jso.26910 | DOI Listing |
Exp Ther Med
February 2025
Department of Emergency, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437199, P.R. China.
Previous research has highlighted the critical role of amino acid metabolism (AAM) in the pathophysiology of sepsis. The present study aimed to explore the potential diagnostic and prognostic value of AAM-related genes (AAMGs) in sepsis, as well as their underlying molecular mechanisms. Gene expression profiles from the Gene Expression Omnibus (GSE65682, GSE185263 and GSE154918 datasets) were analyzed.
View Article and Find Full Text PDFPatterns (N Y)
December 2024
Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA.
Guidelines in statistical modeling for genomics hold that simpler models have advantages over more complex ones. Potential advantages include cost, interpretability, and improved generalization across datasets or biological contexts. We directly tested the assumption that small gene signatures generalize better by examining the generalization of mutation status prediction models across datasets (from cell lines to human tumors and vice versa) and biological contexts (holding out entire cancer types from pan-cancer data).
View Article and Find Full Text PDFFront Chem
December 2024
African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.
Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.
View Article and Find Full Text PDFObjective: To investigate machine learning-based regression models to predict the postoperative apnea-hypopnea index (AHI) for evaluating the outcome of velopharyngeal surgery in adult obstructive sleep apnea (OSA) subjects.
Study Design: A single-center, retrospective, cohort study.
Setting: Sleep medical center.
Objective: To analyze the accuracy of ChatGPT-generated responses to common rhinologic patient questions.
Methods: Ten common questions from rhinology patients were compiled by a panel of 4 rhinology fellowship-trained surgeons based on clinical patient experience. This panel (Panel 1) developed consensus "expert" responses to each question.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!