Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Twitter, as is well known, is one of the most active social media platforms, with millions of tweets posted every day, in which different people express their opinions on topics such as travel, economic concerns, political decisions, and so on. As a result, it is a useful source of knowledge. We offer Sentiment Analysis using Twitter Data for the research. Initially, our technology retrieves currently accessible tweets and hashtags about various types of covid vaccinations posted on Twitter through using Twitter's API. Following that, the imported Tweets are automatically configured to generate a collection of untrained rules and random variables. To create our model, we're utilizing, Tweepy, which is a wrapper for Twitter's API. Following that, as part of the sentiment analysis of new Messages, the software produces donut graphs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046075 | PMC |
http://dx.doi.org/10.1016/j.matpr.2022.04.809 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!