Background: Post-menopausal hypertension has been attributed solely to declining estrogen levels. The purpose of the research is to elucidate the mechanism by which follicle stimulating hormone(FSH) increases renin production involved in the regulation of blood pressure.
Methods: The expression of follicle stimulating hormone receptors (FSHRs) in renal juxtaglomerular cells and a As4.1 juxtaglomerular mouse cell line was evaluated. We established a mouse model by ovariectomy (OVX). Ovariectomized mice were treated with gonadotropin-releasing hormone agonist (GnRHa) (OVX + GnRHa). Ovariectomized mice initially received physiological doses of estrogen and were then injected with recombinant FSH (OVX + E + FSH).
Results: We found that FSHR was expressed in mouse renal juxtaglomerular cells labeled by renin antibody and in As4.1 cells. FSH promoted renin synthesis via Gsα-coupled FSHRs that activated protein kinase A, cyclic adenosine monophosphate(cAMP) response element-binding protein, extracellular signal-regulated kinase (Erk1/2), Protein kinase B(AKT), and c-Jun N-terminal kinase signaling pathways in As4.1 cells. We found increased serum FSH levels in the ovariectomized mouse with concurrent increases in renin, angiotensin II, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial blood pressure (MAP). Additionally, increases in serum renin, angiotensin II, HR, SBP, DBP, and MAP were reduced by the additional injection of GnRHa. Exogenous FSH administration completely reversed decreases in renin, angiotensin II, HR, SBP, DBP, and MAP even in mice that received physiological doses of estrogen to maintain normal estradiol levels.
Conclusions: Elevated FSH stimulates renin production involving a mechanism that may be relevant to the expression of FSH receptors in renal juxtaglomerular cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063271 | PMC |
http://dx.doi.org/10.1186/s13098-022-00816-x | DOI Listing |
bioRxiv
December 2024
Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.
Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2025
Division of Pediatric Nephrology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States.
Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Forkhead box D1-positive (Foxd1) stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.
View Article and Find Full Text PDFClin Sci (Lond)
December 2024
Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, U.S.A.
Cureus
September 2024
Internal Medicine, Baptist Health South Florida, Miami, USA.
Int J Mol Sci
September 2024
Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health-School of Medicine, Witten/Herdecke University, 58453 Witten, Germany.
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!