Despite breakthroughs in cancer immunotherapy, most tumor-reactive T cells cannot persist in solid tumors due to an immunosuppressive environment. We developed Tres (tumor-resilient T cell), a computational model utilizing single-cell transcriptomic data to identify signatures of T cells that are resilient to immunosuppressive signals, such as transforming growth factor-β1, tumor necrosis factor-related apoptosis-inducing ligand and prostaglandin E2. Tres reliably predicts clinical responses to immunotherapy in melanoma, lung cancer, triple-negative breast cancer and B cell malignancies using bulk T cell transcriptomic data from pre-treatment tumors from patients who received immune-checkpoint inhibitors (n = 38), infusion products for chimeric antigen receptor T cell therapies (n = 34) and pre-manufacture samples for chimeric antigen receptor T cell or tumor-infiltrating lymphocyte therapies (n = 84). Further, Tres identified FIBP, whose functions are largely unknown, as the top negative marker of tumor-resilient T cells across many solid tumor types. FIBP knockouts in murine and human donor CD8 T cells significantly enhanced T cell-mediated cancer killing in in vitro co-cultures. Further, Fibp knockout in murine T cells potentiated the in vivo efficacy of adoptive cell transfer in the B16 tumor model. Fibp knockout T cells exhibit reduced cholesterol metabolism, which inhibits effector T cell function. These results demonstrate the utility of Tres in identifying biomarkers of T cell effectiveness and potential therapeutic targets for immunotherapies in solid tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406236 | PMC |
http://dx.doi.org/10.1038/s41591-022-01799-y | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:
The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan. Electronic address:
Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:
Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!