Micropollutant content of Sargassum drifted ashore: arsenic and chlordecone threat assessment and management recommendations for the Caribbean.

Environ Sci Pollut Res Int

Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France.

Published: September 2022

Massive Sargassum beachings occurred since 2011 on Caribbean shores. Sargassum inundation events currently involve two species, namely S. fluitans and S. natans circulating and blooming along the North Atlantic subtropical gyre and in the entire Caribbean region up to the Gulf of Mexico. Like other brown seaweeds, Sargassum have been shown to bioaccumulate a large number of heavy metals, alongside with some organic compounds including the contamination by historical chlordecone pollution in French West Indies (FWI), an insecticide used against the banana's weevil Cosmopolites sordidus. The present study reports, during two successive years, the concentration levels of heavy metals including arsenic in Martinique and Guadeloupe (FWI). We found that Sargassum can also accumulate a high concentration of chlordecone. Sargassum contamination by chlordecone is observed in areas close to contaminated river mouth but can be partly due to chlordecone desorption when secondary drifted on chlordecone-free shore. Our results further demonstrate that algae bleaching raises a number of questions about inorganic and organic pollutant (i) bioaccumulation, at sea for arsenic and close to river plumes for chlordecone, (ii) transport, and (iii) dissemination, depending the shoreline and the speciation for arsenic and/or metabolization for both.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-20300-3DOI Listing

Publication Analysis

Top Keywords

heavy metals
8
sargassum
6
chlordecone
6
micropollutant content
4
content sargassum
4
sargassum drifted
4
drifted ashore
4
arsenic
4
ashore arsenic
4
arsenic chlordecone
4

Similar Publications

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!