Background: Limited biomechanical data exist describing how yoga asanas (postures) load the limbs and joints, and little evidence-based recommendations for yoga injury prevention are available. This study aimed to establish joint loading metrics for an injury-prone, yet common yoga pose, the Triangle asana (Trikonasana) by identifying how stance width adjustments alter lower extremity loading.
Methods: Eighteen yoga practitioners underwent 3D motion analysis while performing Trikonasana with self-selected (SS) stance width and -30, -20, -10, +10, +20, and +30% of SS stance width. Ground reaction forces (GRFs), joint forces, and joint moments were calculated for the leading and trailing limb ankle, knee, and hip. One-way repeated-measures analysis of variance determined differences in loading due to stance width.
Results: GRFs, net joint forces, and net joint moments were significantly affected by stance width where increasing stance width increased leading limb loading but decreased trailing limb loading.
Conclusions: Altering stance width of Trikonasana influences lower extremity limb loading, and these loading responses were limb-dependent. Yoga practitioners and instructors can use this information to objectively support increasing or decreasing stance width to reduce or increase limb loading according to their goals or to make accommodations to groups such as beginners or at-risk populations for safer, more accessible yoga practices. Cuing a wider or narrower stance width will not have the same effect on both limbs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbmt.2022.02.008 | DOI Listing |
Physiother Theory Pract
January 2025
Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan.
Introduction: Body lateropulsion is a postural disorder characterized by involuntary leaning to one side and is a major symptom in individuals with Wallenberg syndrome. Although the hanger reflex has potential applications as a simple stimulus to control posture, there are no reports of its use in body lateropulsion cases. The case report aims to document the immediate effects of a wire hanger worn around the head on the center of foot pressure and gait pattern parameters.
View Article and Find Full Text PDFPLoS One
January 2025
School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.
Our ability to balance upright provides a stable platform to perform daily activities. Balance deficits associated with various clinical conditions may affect activities of daily living, highlighting the importance of quantifying standing balance in ecological environments. Although typically performed in laboratory settings, the growing availability of low-cost inertial measurement units (IMUs) allows the assessment of balance in the real world.
View Article and Find Full Text PDFGait Posture
December 2024
School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada. Electronic address:
Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Gait disturbance is a common motor symptom in Angelman syndrome (AS), but its characteristics have been poorly studied quantitatively. This study aimed to analyze gait characteristics in school-age children with AS using three-dimensional gait analysis (3DGA). Patients with clinically and genetically confirmed AS and healthy children aged 6-15 years were included.
View Article and Find Full Text PDFPLoS One
January 2025
Tokyo Metropolitan University, Hachioji, Japan.
Objective: The purpose of this study was to quantitatively measure the split-step skills of the world's top badminton players to clarify the characteristics underlying these skills when moving into the forehand position in the rear court.
Methods: We analyzed the four best ranking players (1st to 4th) in the men's singles competition at the World Badminton Federation (BWF) World Championships 2023, a world tournament whose match videos are available online. Analysis 1 was conducted to determine the location of the players' feet on the court when performing a split-step while moving to the forehand rear court, as well as the width of the stance and the reaction time from that stance to taking the first step.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!