AI Article Synopsis

  • Neonatal bacteremia, primarily caused by Gram-positive bacteria, poses a significant risk of severe infections like pneumonia and meningitis in preterm newborns.
  • Current models using older mice are not ideal for studying infections in preterm infants, prompting this study to use 0-day-old BALB/c mice infected with different bacteria.
  • The study found that mortality rates depended on both the bacterial species and the amount injected, with the lungs showing the highest levels of bacterial burden and inflammation, suggesting this model could enhance understanding of neonatal pneumonia.

Article Abstract

Neonatal bacteremia remains the major cause of infectious diseases-related death, especially in preterm newborns. Gram-positive bacteria are the main causative agent of neonatal bacteremia and exhibit a high risk of causing pneumonia and/or meningitis. The pathogenesis of bacteremia in preterm newborn is poorly understood. Current neonatal models of bacterial infection have been used to study the disease mechanisms; however, these studies employed mice of several days of age that could be less comparable to the bacteremia in preterm infants. In this study, we infected intravenously 0-day-old BALB/c mice with different inocula of Staphylococcus aureus, Streptococcus agalactiae or Enterococcus faecalis. We found that the mortality of the newborn mice was inoculum-dependent and also bacterial species-dependent. We observed bacterial burden in the lung, liver, brain, kidney and spleen of the infected animals. The lung was the tissue with the greatest bacterial burden and cellular infiltration in animals infected with the three bacteria evaluated. We found increased production of IL-6 and TNFα in the lung from newborn mice at 3 days post-infection. This neonatal model shows bacterial dissemination to the lung and will be useful for promote a better understanding of the pathophysiology of neonatal pneumonia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2022.104984DOI Listing

Publication Analysis

Top Keywords

newborn mice
12
gram-positive bacteria
8
lung newborn
8
il-6 tnfα
8
neonatal bacteremia
8
bacteremia preterm
8
mice days
8
bacterial burden
8
lung
5
mice
5

Similar Publications

Prenatal Exposure to Quercetin Protects Against Methimazole-Induced Reflexive Motor Behavior and Oxidative Stress Markers in Mouse Offspring.

Int J Dev Neurosci

February 2025

Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Quercetin is a natural flavonoid and one of the most powerful antioxidants. Due to its wide range of biological properties, it may improve cognitive and physical performance by affecting nervous tissue. The current study is aimed at determining the effect of prenatal exposure to quercetin against methimazole (MMI)-induced hypothyroidism on reflexive motor behavior in mouse offspring.

View Article and Find Full Text PDF

Background: Increased ribosome biogenesis is required for tumor growth. In this study, we investigated the function and underlying molecular mechanism of ribosome biogenesis factor (RBIS) in the progression of non-small cell lung cancer (NSCLC).

Methods: In our study, we conducted a comprehensive analysis to identify key genes implicated in ribosome biogenesis by leveraging a Gene Set Enrichment Analysis (GSEA) dataset.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a devastating disease observed in premature infants, characterized by intestinal ischemia and inflammation. Hypoxia-inducible factor-1 alpha (HIF-1α), a master regulator of the cellular response to hypoxia and ischemia, plays a critical role in NEC pathogenesis. However, the precise mechanisms by which HIF-1α influences the intestines in NEC remain poorly understood.

View Article and Find Full Text PDF

Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to () or () increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood.

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD), a chronic lung disease prevalent among premature infants, significantly impacts lifelong respiratory health. Macrophages, as key components of the innate immune system, play a role in lung tissue inflammation and injury, exhibiting diverse and dynamic functionalities. The M4 macrophage, a distinctive subtype primarily triggered by chemokine (C-X-C motif) ligand 4 (CXCL4), has been implicated in pulmonary inflammatory and fibrotic processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!