Impacts of sampling-tube loss on quantitative analysis of gaseous semi-volatile organic compounds (SVOCs) using an SPME-based active sampler.

Chemosphere

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China. Electronic address:

Published: August 2022

Active samplers are widely used in the quantification of gaseous semi-volatile organic compounds (SVOCs). A sampling tube is often assembled upstream of the sampler, especially in the active samplers used for separating the particle-phase and gas-phase SVOCs and in the newly-designed active sampler based on solid-phase microextraction (SPME). However, gaseous SVOCs can be easily adsorbed by the sampling tube, which may induce significant errors to the quantitative results. Taking the SPME-based active sampler as an example, a mass-transfer model was developed to characterize the sampling-tube loss of gaseous SVOCs. Experiments involving six SVOCs were conducted. The model predictions (with a best-fit surface/air partition coefficient of SVOCs) were found to be consistent with the measurements. Both model predictions and experimental data indicated that the measured concentrations were significantly lower than the actual concentration (around 60% lower) due to the sampling-tube loss. The duration of sampling-tube loss (τ, minutes to days) varied with the volatility of SVOCs (vapor pressure, V), i.e., log τ linearly increased as increasing log V. The relationship could be helpful for determining the sampling strategies to eliminate (reduce) the effects of sampling-tube loss according to the volatility of SVOCs. The above conclusions may be also applicable for other active samplers of gaseous SVOCs. However, further studies are required to quantify the effects of sampling-tube loss for other active samplers due to the difference in the size and shape of the sampling tube between them and the SPME-based active sampler. The corresponding mass-transfer model and experimental procedure may require adjustment as appropriate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134780DOI Listing

Publication Analysis

Top Keywords

sampling-tube loss
24
active sampler
16
active samplers
16
spme-based active
12
sampling tube
12
gaseous svocs
12
svocs
10
gaseous semi-volatile
8
semi-volatile organic
8
organic compounds
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!