Characterization of persistent materials of deposited PM in the human lung.

Chemosphere

Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Published: August 2022

Clearance of deposited urban air particulates (PMs) from the lung is vital for the protection of the lung tissue. Several studies have investigated the behavior of immune cells against these particulates in vitro and in vivo. However, the fate of particulates in the lung is yet unclear. Here, we report the results of our investigations on the clearance of particulates from the lung. Twelve normal lung tissue samples were taken from nonsmoking and non-occupationally exposed patients who needed lung lobectomy or segmentectomy. The remaining particulates were isolated from the alveolar area and extracellular matrix (ECM), separately, and their chemical composition was determined using the FE-SEM EDAX and GC-MS. Moreover, urban air PM was collected in two forms dry and washed. These were characterized too. Our results showed that none of the metals in the deposited particulates structure is fully water-soluble. After contact with mucosal liquid, the alveolar particulates included Fe, Al, Si, Ti, and Ni. These elements were absent in the PMs isolated from ECM. The organics of alveolar and ECM particulates were the same and included tetra-decane, hexadecane, and octa-decane. None of the organics present in the urban air PM, such as PAHs, were available in isolated particulates from the lung tissue. This study shows that the full clearance of inhaled particulates does not happen in the lung. The immune system's primary function is detoxification by removing all components identifiable by immune cells. After that, the remained PMs will be relocated and deposited into the ECM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134774DOI Listing

Publication Analysis

Top Keywords

urban air
12
lung tissue
12
particulates lung
12
particulates
10
lung
9
immune cells
8
particulates included
8
characterization persistent
4
persistent materials
4
deposited
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!