Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accumulating evidence to date suggests that brown rice is superior to white rice in regard to its beneficial impact on a number of risk factors of the metabolic syndrome (MetS). However, little is known about the influence of fermented brown rice beverage on the gut microbiota in humans. We therefore hypothesized that its impact would beneficially alter the gut microbiota composition of patients with MetS. Using a 4-week randomized, single-arm study design, subjects (n = 40) were advised to consume a daily fermented brown rice beverage (BA) or fermented white rice beverage (WA) as a replacement of their main meal. Clinical and anthropometric measurements as well as fecal samples were collected at baseline and immediately after completion of the intervention. Gut microbiota was analyzed using 16S ribosomal RNA sequencing and capillary electrophoresis-time-of-flight mass spectrometry was used to measure plasma short-chain fatty acids. Interestingly, ingestion of BA in contrast to WA resulted in a unique elevation in the abundance of number of beneficial species belonging to the Clostridia class, associated with reduced inflammation, and increased short-chain fatty acid production: Lactobacillales bacterium DJF B280 (P = .005), Butyrate producing bacterium A2 207 (P = .012), and Firmicutes bacterium DJF VP44 (P = .038). This study demonstrates that consumption of BA is effective to beneficially modulate the gut microbiota compared with WA in patients with MetS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nutres.2022.03.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!