A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-Plane, In-Series Nanopores with Circular Cross Sections for Resistive-Pulse Sensing. | LitMetric

Resistive-pulse sensing with solid-state nanopores is a sensitive, label-free technique for analyzing single molecules in solution. To add functionality to resistive-pulse measurements, direct coupling of the nanopores to other pores and nanoscale fluidic elements, .., reactors, separators, and filters, in the same device is an important next step. One approach is monolithic fabrication of the fluidic elements in the plane of the substrate, but methods to generate pores with circular cross sections are needed to improve sensing performance with in-plane devices. Here, we report a fabrication method that directly patterns nanopores with circular cross sections in series and in plane with the substrate. A focused ion beam instrument is used to mill a lamella in a nanochannel and, subsequently, bore a nanopore through the lamella. The diameter and geometry of the nanopore are controlled by the current and dose of the ion beam and by the tilt angle and thickness of the lamella. We fabricated devices with vertical and tilted lamellae and nanopores with diameters from 40 to 90 nm in cylindrical and conical geometries. To test device performance, we conducted resistive-pulse measurements of hepatitis B virus capsids. Current pulses from = 3 capsids (∼31 nm diameter) and = 4 capsids (∼35 nm diameter) were well resolved and exhibited relative pulse amplitudes (Δ/) up to 5 times higher than data obtained on nanopores with rectangular cross sections. For smaller pore diameters (<45 nm), which approach the diameters of the capsids, a dramatic increase in the pulse amplitude was observed for both = 3 and = 4 capsids. Two and three pores fabricated in series further improved the resolution between the relative pulse amplitude distributions for the = 3 and = 4 capsids by up to 2-fold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626396PMC
http://dx.doi.org/10.1021/acsnano.1c08680DOI Listing

Publication Analysis

Top Keywords

cross sections
16
circular cross
12
nanopores circular
8
resistive-pulse sensing
8
resistive-pulse measurements
8
fluidic elements
8
plane substrate
8
ion beam
8
nanopores
6
in-plane in-series
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!