Limited treatments are available for alleviating heart remodeling in postmenopausal hypertension. The cardioprotective effect of naoxintong (NXT) has been widely accepted. This study aimed to explore the effects of NXT on pathological heart remodeling in a postmenopausal hypertension mouse model in vivo and H9c2 cardiomyocytes in vitro. In vivo, ovariectomy combined with chronic angiotensin II infusion was used to establish the postmenopausal hypertension animal model. NXT significantly ameliorated cardiac remodeling as indicated by a reduced ratio of heart weight/body weight and left ventricle weight/body weight, left ventricular wall thickness, diameter of cardiomyocytes, and collagen deposition in the heart. NXT also significantly increased the expression of estrogen receptors (ERs) and downregulated the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2). In vitro, NXT treatment greatly suppressed angiotensin II-induced cardiac hypertrophy, cardiac fibrosis, and excessive oxidative stress as proven by reducing the diameter of H9c2 cardiomyocytes, expression of hypertrophy and fibrosis markers, intracellular reactive oxygen species, and oxidative enzymes. Mechanistically, NXT significantly upregulated the expression of ERs, which activated the Nrf2/HO-1 signaling pathway and inhibited the phosphorylation of the p38α pathway. Collectively, the results indicated that NXT administration might attenuate cardiac remodeling through upregulating the expression of ERs, which activated the Nrf2/HO-1 signaling pathway, inhibited the phosphorylation of the p38α signaling pathway, and reduced oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000001285DOI Listing

Publication Analysis

Top Keywords

signaling pathway
20
postmenopausal hypertension
16
nrf2/ho-1 signaling
12
heart remodeling
12
p38α signaling
8
estrogen receptors
8
remodeling postmenopausal
8
h9c2 cardiomyocytes
8
cardiac remodeling
8
weight/body weight
8

Similar Publications

Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.

View Article and Find Full Text PDF

Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities.

J Inflamm Res

January 2025

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.

Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.

Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!