Zwitterionic modification of colloids with weak acids and bases represents a promising strategy in creating functional materials with tunable properties and modeling the self-organization of charged proteins. However, accurate incorporation of the dynamic dissociation or association of ionization groups known as charge regulation (CR) is often intractable in theoretical and computational investigations since charge redistribution and configuration need to be evolved self-consistently. Using hybrid Monte Carlo and molecular dynamics simulations, we demonstrate that a dilute suspension of overall charge-neutral zwitterionic Janus nanoparticles shows a conformational transition from an open assembly of string or bundle to compact cluster along with the variation in pH. The behavior under CR is qualitatively different from the commonly employed constant charge condition where the transition is absent. The CR-induced clustering is due to the inhomogeneous and fluctuating charges localized near the equatorial boundary of the Janus particle. These features are enhanced particularly at low salt concentration and high electrostatic coupling strength. Our results indicate the critical role of charge regulation in the spatial self-organization of zwitterionic nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.158001 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFSmall
January 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
The photocatalytic conversion of CO into products such as CH and CH poses a significant challenge due to the lengthy reaction steps and the high energy barrier involved. In this study, both benzothiadiazole (BTD) and hydroxyl groups (-OH) are introduced into cobalt-based polymerized porphyrinic network (PPN) through a C-C coupling reaction. This modification of orbital energy levels that strengthens the ability of gain electrons and facilitates the charge transfer in PPN.
View Article and Find Full Text PDFSmall Methods
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
USTC: University of Science and Technology of China, School of Chemistry and Materials Science, No.96, JinZhai Road, Baohe District, 230026, Hefei, CHINA.
Undesirable dendrite growth and side reactions at the electrical double layer (EDL) of Zn/electrolyte interface are critical challenges limiting the performance of aqueous zinc ion batteries. Through density functional theory calculations, we demonstrate that grafting large π-conjugated molecules (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!