Rapid urbanisation has had a significant negative influence on the water bodies that flow through and around urban areas. This study aims to evaluate the water quality and analyse the suitability for drinking and irrigation uses. This study envisaged assessing the water quality status of the groundwater using the pollution index of groundwater (PIG), ecological risk index (ERI) and multivariate statistical techniques, namely cluster analysis (CA) and principal component analysis (PCA), that were applied to differentiate the sources of water quality variation and determine the cause of pollution in the study area. Most groundwater is unsuitable for drinking and irrigation consumption, depending on analyses. PIG values indicated high pollution levels in the studied water body, rendering it unsuitable for any practical purpose. CA results showed the impact of surface water and treatment plant on groundwater. PCA was used to identify four important factors in the groundwater, including mineral and nutrient pollution, heavy metal pollution, organic pollution and faecal contamination. The deteriorating water quality of the groundwater was demonstrated to originate from vast sources of anthropogenic activities, especially municipal sewage discharge. Study wells had greater concentrations of Cl and Na in their water because seawater flows into the aquifer system and mixes with the marine aquifer matrix. Thus, the current work reveals how to employ the PIG and multivariate statistical approaches to obtain more accessible and more meaningful information about the water quality of groundwater and to identify the sources of pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-19761-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive SW 2145, PO Box 1099, Edwardsville, IL, USA, 62026.
The designated uses of lakes connect individuals to the natural environment, but some can expose recreational users to pathogens associated with fecal contamination that cause waterborne illnesses. Routine monitoring of fecal indicators in surface waters helps identify and track sources of fecal contamination to protect public health. We examined fecal indicators ( and enterococci) and factors influencing recreational freshwater quality.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Daily flushing of dental unit waterlines is important for infection control. However, the effect of flushing on water quality management in portable dental units (PDUs) for mobile dental treatments remains unclear. In this study, we aimed to investigate the factors affecting the effectiveness of PDU flushing.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada.
Phosphorus (P) loss from soils can contribute significantly toward P enrichment in water bodies, impairing water quality. Application of soil amendments is a viable strategy to decrease soluble P in surface soils. Since soluble P is reduced through different mechanisms that are amendment-specific, blended amendments could be a better approach than single amendment applications; however, very little information is available on blended amendment effects in reducing P loss from soils.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA.
Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.
Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!