[A male with ossification of the lungs].

Ned Tijdschr Geneeskd

LUMC, afd. Longziekten, Leiden.

Published: March 2022

A 71-year old man, known with unclassified pulmonary fibrosis for years, shows dendriform pulmonary ossification (DPO) on a chest CT-scan after spontaneous pneumothorax. DPO is a rare finding with a mostly benign, slowly progressive course. Pneumothorax is an uncommon but clinically important complication of DPO with high chance of recurrence.

Download full-text PDF

Source

Publication Analysis

Top Keywords

male ossification
4
ossification lungs]
4
lungs] 71-year
4
71-year man
4
man unclassified
4
unclassified pulmonary
4
pulmonary fibrosis
4
fibrosis years
4
years dendriform
4
dendriform pulmonary
4

Similar Publications

Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.

View Article and Find Full Text PDF

Introduction: Ankylosing spondylitis (AS), a chronic inflammatory spondyloarthropathy affecting the spine, progressively leads to increased spinal stiffness. This condition increases the risk of spine fractures in patients, even from trivial injuries. The process of slow bone formation within the ligaments of the spine and the fusion of the spinal diarthrosis contribute to the most prominent symptom of progressive stiffness of joints, predominantly affecting the spine and sacroiliac joints.

View Article and Find Full Text PDF

Unlabelled: BACKGROUND CERVUS ELAPHUS SIBIRICUS: (CES) has been traditionally used in Korean clinics to promote fracture healing based on its function of tonifying the kidneys and strengthening bones. However, experimental data supporting its efficacy are still insufficient. The aim of this study investigated the bone-union properties of CES in a femoral fracture animal model and its corresponding molecular mechanisms.

View Article and Find Full Text PDF

Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.

Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance.

View Article and Find Full Text PDF

In the musculoskeletal system, lymphatic vessels (LVs), which are interdigitated with blood vessels, travel and form an extensive transport network. Blood vessels in bone regulate osteogenesis and hematopoiesis, however, whether LVs in bone affect fracture healing is unclear. Here, we investigate the lymphatic draining function at the tibial fracture sites using near-infrared indocyanine green lymphatic imaging (NIR-ICG) and discover that lymphatic drainage insufficiency (LDI) starts on day one and persists for up to two weeks following the fracture in male mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!